
VFX Graphics System for Win32 Development

__

Introduction

WinVFX API Reference

System Abstraction Layer (SAL) API Reference

VFX Tools Reference

VFX File Formats

Glossary and Index

Miles Design, Inc.

8301 Elander Drive

Austin, TX 78750

512-345-2642

Many of the features included with the WinVFX system's current release are the result of valuable suggestions and feedback from users. As a licensee, your comments are important, and help to ensure the continued improvement of this product.

__

 Authors: Ken Arnold, John Lemberger, John Miles

Programming: Ken Arnold, John Lemberger, John Miles

WinVFX and VFX are trademarks of Miles Design, Inc. Other brand and product names are trademarks or registered trademarks of their respective holders.

Copyright (c) 1997 Miles Design, Incorporated. All rights reserved. Permission to copy and distribute this manual, or portions thereof, is hereby granted to WinVFX licensees in accordance with the conditions set forth in the product's license agreement.

Table of Contents

4

Introduction

VFX Application Program Interface (API) Reference
5

VFX API Overview
5

VFX API Data Structures and Functions
8

VFX_assign_window_buffer
9

VFX_character_draw
10

VFX_character_width
11

VFX_color_scan
11

VFX_CRGB
12

VFX_WINDOW
12

PANE
12

PANE_LIST
13

VFX_POINT
13

VFX_RGB
13

VFX_FONT
14

VFX_RGB_value
14

VFX_color_to_RGB
14

VFX_get_palette_entry
15

VFX_get_palette_range
15

VFX_lock_window_surface
15

VFX_pane_list_get_entry
16

VFX_pane_list_identify_point
16

VFX_pixel_value
16

VFX_set_display_mode
17

VFX_set_palette_entry
18

VFX_set_palette_range
18

VFX_shape_area_translate
19

VFX_triplet_value
20

VFX_unlock_window_surface
20

VFX_Cos_Sin
20

VFX_dithered_Gouraud_polygon
21

VFX_ellipse_draw
22

VFX_ellipse_fill
22

VFX_fixed_mul
22

VFX_flat_polygon
23

VFX_font_height
23

VFX_GIF_draw
24

VFX_GIF_palette
24

VFX_GIF_resolution
24

VFX_Gouraud_polygon
25

VFX_ILBM_draw
26

VFX_ILBM_palette
26

VFX_ILBM_resolution
26

VFX_illuminate_polygon
27

VFX_line_draw
28

VFX_map_polygon
30

VFX_pane_construct
31

VFX_pane_copy
32

VFX_pane_destroy
33

VFX_pane_list_add
33

VFX_pane_list_add_area
34

VFX_pane_list_clear
34

VFX_pane_list_construct
35

VFX_pane_list_delete_entry
35

VFX_pane_list_destroy
36

VFX_pane_list_refresh
36

VFX_pane_scroll
37

VFX_pane_wipe
38

VFX_PCX_draw
39

VFX_PCX_palette
39

VFX_PCX_resolution
39

VFX_pixel_read
40

VFX_pixel_write
41

VFX_point_transform
41

VFX_rectangle_hash
42

VFX_shape_bounds
42

VFX_shape_colors
43

VFX_shape_count
43

VFX_shape_draw
44

VFX_shape_list
44

VFX_shape_lookaside
45

VFX_shape_minxy
45

VFX_shape_origin
46

VFX_shape_palette
46

VFX_shape_palette_list
47

VFX_shape_remap_colors
47

VFX_shape_resolution
48

VFX_shape_scan
48

VFX_shape_set_colors
49

VFX_shape_transform
50

VFX_shape_translate_draw
52

VFX_shape_visible_rectangle
53

VFX_string_draw
54

VFX_translate_polygon
55

VFX_window_construct
55

VFX_window_destroy
56

SAL Application Program Interface Reference
59

SAL API Overview
59

SAL_RGB
62

SAL_WINAREA
62

SAL_DDRAWINFO
62

SAL_debug_printf
63

SAL_get_preference
63

SAL_set_preference
64

SAL_set_palette_entry
66

SAL_get_palette_entry
66

SAL_set_palette_range
66

SAL_get_palette_range
67

SAL_get_pixel_format
67

SAL_display_resolution
68

SAL_display_page_count
68

SAL_flip_surface
68

SAL_blit_surface
69

SAL_wipe_surface
69

SAL_lock_surface
70

SAL_unlock_surface
70

SAL_allocate_video_surface
71

SAL_release_video_surface
71

SAL_show_system_mouse
72

SAL_hide_system_mouse
72

SAL_constrain_mouse
72

SAL_startup
73

SAL_shutdown
73

SAL_create_main_window
73

SAL_create_main_window_with_WNDCLASS
74

SAL_set_display_mode
74

SAL_window_status
75

SAL_window_area
75

SAL_client_area
75

SAL_is_app_active
75

SAL_register_focus_callback
76

SAL_register_WNDPROC
76

SAL_FlipToGDISurface
76

SAL_get_back_buffer_DC
77

SAL_release_back_buffer_DC
77

SAL_serve_message_queue
77

SAL_alert_box
77

SAL_register_DDSTARTUP_callback
78

SAL_register_DDSHUTDOWN_callback
79

SAL_get_DDRAW_info
79

VFX Tools Reference
81

GETFONT: Font Conversion Utility
81

GETSHAPE: VFX Shape Compiler Utility
82

SHOWPIC: Picture Display Utility
84

VFX File Formats
85

VFX Shape File Format
86

Glossary
90

Introduction TC "Introduction" \l "1"

 XE "Introduction"
Miles Design's VFX Graphics System is a collection of C functions, device drivers, and development tools designed to provide real-time graphics support on IBM-compatible personal computers.

This manual describes the VFX Video Effects (VFX) system. Part II, the API Reference, presents each individual C language function in detail, while Part III offers guidelines on the development tools provided with the VFX graphics package. Supplied on disk are several "real-world" example programs which complement the API Reference as an aid to programmers. Finally, appendices reveal full descriptions of every proprietary file format used by the VFX graphics system. A complete glossary and index appear at the end of the manual.

VFX Application Program Interface (API) Reference TC "VFX Application Program Interface (API) Reference" \l "1"

 XE "VFX Application Program Interface (API) Reference"
VFX API Overview TC "VFX API Overview" \l "2"

 XE "VFX API Overview"
Two header files, WINVFX.H and SAL.H, are provided for inclusion by Win32 C/C++ applications. These header files are compatible with all C/C++ compilers which support Microsoft’s Win32 standard extension set.

PANEs, VFX_WINDOWs, and Screen Space

Three basic coordinate systems or 'spaces' are used by VFX. These are 'PANE' space, 'VFX_WINDOW' space, and 'screen' space. (The VFX_WINDOW structure in WinVFX corresponds to the VFX_WINDOW structure in the DOS library.)

The most basic of the VFX coordinate spaces is screen space. Screen space refers to the Cartesian coordinate system used by the VFX video driver to display images on the monitor. The screen space used by a VFX application depends upon the resolution of its intended video mode. Regardless of the resolution, screen space is described by three basic rules:

Rule 1:
The upper-leftmost pixel on the screen (or the window’s client area, if running in windowed

mode) is 0,0 in screen space.

Rule 2:
The positive x-axis extends to the right.

Rule 3:
The positive y-axis extends downward.

Note:
The VFX API can support any resolution and color depth, although current versions of the WinVFX system are limited to 8-bpp and 15/16-bpp color depths.

A VFX_WINDOW structure represents a linear buffer in video or system RAM containing pixel information which is intended to be written to a rectangular portion of the screen. VFX_WINDOWs are defined with a fixed width and height, and typically represent all or part of the video “back buffer” surface.

A PANE defines a clipping region within a VFX_WINDOW. While VFX functions automatically clip to VFX_WINDOW boundaries, PANEs provide a method for clipping within the boundaries of a VFX_WINDOW. A PANE coordinate system is always defined relative to the VFX_WINDOW with which it is associated.

To make full use of system RAM buffer space, the upper-left corner of a VFX_WINDOW is always defined as (0,0) in VFX_WINDOW coordinates. A PANE may be defined anywhere in VFX_WINDOW coordinate space, whether inside, outside, or overlapping the VFX_WINDOW. The x0,y0 elements of the PANE structure define the upper-left corner of the PANE in VFX_WINDOW coordinates; similarly, its x1,y1 elements define the lower-right boundaries of the PANE in VFX_WINDOW space, inclusive. VFX functions which write to a PANE require coordinates to be specified relative to that PANE -- not to the VFX_WINDOW. This means that the upper-left corner of any PANE in PANE coordinates is (0,0), regardless of the PANE's position in VFX_WINDOW space.

Mode-Independent Color Specification and the RGB_TRIPLET () / RGB_NATIVE () Macros

The Windows VFX package includes libraries compatible with high-color (15/16-bpp RGB) display modes as well as conventional 8-bpp palettized (“VGA-style”) display modes. WINVFX8.DLL and WINVFX16.DLL export an almost-identical set of API functions, a number of which require the specification of a color parameter. These latter functions include:

VFX_line_draw() (color specified as parm)

VFX_ellipse_draw()

VFX_ellipse_fill()

VFX_pane_wipe()

VFX_pane_scroll() (color specified as parm)

VFX_pixel_write()

VFX_rectangle_hash()

VFX_flat_polygon() (color specified as first vertex c member)

In both the 8-bpp and 15/16-bpp versions of VFX, the color values passed to these functions may take one of three forms:

As a palette index value from 0-255 WINVFX8.DLL supports 8-bit palettized output, in which color values from 0 to 255 are treated as indexes into the 256-entry RGB video DAC array. The DAC’s palette values may be manipulated by the VFX_set_palette_entry() and VFX_get_palette_entry() functions. WINVFX16.DLL, intended for use in high-color RGB modes which do not support hardware palette registers, nevertheless “emulates” these registers in software to maximize compatibility with the 8-bpp VFX packages, which can ease porting tasks and simplify the design of multi-mode applications. When using WINVFX16, color values between 0 and 255 are translated via 256 internal virtual palette entries into appropriate RGB bit patterns which are compatible with the native display format.

As a 15-bit (5-5-5) RGB color value Both WINVFX8.DLL and WINVFX16.DLL support the use of 15-bit RGB values as color specifications. WINVFX8.DLL will search the current palette register set for the closest match to the specified RGB value. This process is time-consuming compared to the direct specification of a palette index, but can be quite convenient in many non-critical cases where an application needs to communicate with both the 8-bpp and 15/16-bpp versions of.VFX in a seamless manner. WINVFX16.DLL, on the other hand, maintains a 32K-entry CLUT (color look-up table) which allows it to instantly translate the caller’s 5-5-5 RGB specification into its equivalent native video format. Both DLLs distinguish 5-5-5 color values from 0-255 palette index values by requiring the caller to set bit 30 (e,g,, add the hexadecimal value 0x40000000) in the color DWORD being passed. VFX.H provides a convenient macro, RGB_TRIPLET(), to allow the caller to specify mode-independent RGB values as standard 8-8-8 RGB values. RGB_TRIPLET() shifts the supplied RGB components right by three places to convert them to 5-5-5 values, and sets bit 30 to inform the VFX primitives that a 5-5-5 value is being specified. This is the recommended way of passing color values to WINVFX16.DLL.

As a native RGB color value This is a slight variation on the 15-bit RGB specification method described above. By setting bit 31 (adding 0x80000000) in the color DWORD passed to a VFX primitive, the application may use the lower WORD of the color value to specify a two-byte value to be written directly, withou any translation, to the output window by the specified primitive. The lower two bytes must therefore constitute an RGB color value which conforms to the RGB bit pattern for the display mode in use. WINVFX16.DLL can support any two-byte color format (4-4-4, 5-5-5, 5-6-5, etc.), so applications should use the VFX_triplet_value() or VFX_pixel_value() functions to convert an 8-8-8 RGB value into a native video mode value before using this technique. (WINVFX8.DLL treats 5-5-5 RGB values as its “native” format, and operates on them exactly as described for 5-5-5 mode-independent RGB values above.)

Mode-Independent Color Specification and the RGB_TRIPLET () / RGB_NATIVE () Macros

VFX.H provides the macro RGB_NATIVE() to convert three 8-bit R/G/B component values into a DWORD representation of the equivalent native color value. There are few reasons to use RGB_NATIVE() in preference to RGB_TRIPLET(), as the color-translation step performed by WINVFX16.DLL in response to an RGB_TRIPLET() specification adds relatively little overhead, while the remapping penalties imposed by WINVFX8.DLL are identical in both cases. Unlike 5-5-5 values, native RGB values should not be stored for significant periods of time (e.g., between frames) by applications which support dynamic display-mode switching, as they will be guaranteed valid only for the display mode which was active when RGB_NATIVE() was used or VFX_triplet_value() / VFX_pixel_value() was called.

Several functions are supplied by both versions of VFX to aid in color-value translation and manipulation. In addition to the RGB_TRIPLET() and RGB_NATIVE() macros mentioned above, these functions include VFX_triplet_value(), VFX_pixel_value(), VFX_RGB_value(), and VFX_color_to_RGB().

VFX API Data Structures and Functions TC "VFX API Data Structures and Functions" \l "2"

 XE "VFX API Data Structures and Functions"
The data structures and functions supported by VFX are detailed beginning on the next page.

VFX_assign_window_buffer

C Prototype:
void * VFX_assign_window_buffer TC "VFX_assign_window_buffer" \l "3"

 XE "VFX_assign_window_buffer" (VFX_WINDOW *window, void *buffer, S32 pitch)

Description:
Associates a memory buffer with a VFX_WINDOW structure.

Parameters:
*window indicates the VFX_WINDOW structure to receive the assigned buffer.

*buffer indicates the buffer to assign to the window, if not NULL.

pitch, if not -1, specifies the offset in bytes between successive scanlines in the buffer.

Returns:
The previous buffer associated with the VFX_WINDOW, if any.

Remarks:
This function should be used to assign a valid buffer to a VFX_WINDOW created by VFX_window_construct (). Typically the application should call VFX_assign_window_buffer () on the back buffer window immediately after obtaining a valid back buffer pointer from SAL_lock_surface (). (This can be done automatically by using VFX_lock_window_surface () instead of calling SAL directly.)

If pitch is not equal to -1, the window->x_max parameter is adjusted to accommodate the specified buffer pitch.

If buffer is NULL, an offscreen buffer of appropriate size is obtained from malloc() and assigned to the VFX_WINDOW. This buffer will be freed automatically upon calling VFX_window_destroy().

VFX_character_draw

C Prototype:
S32 VFX_character_draw TC "VFX_character_draw" \l "3"

 XE "VFX_character_draw" (PANE *pane, S32 x, S32 y, void *font, S32 character, U8 *color_translate)

Description:
Draws a character from a VFX font file image at x,y in the specified pane, with optional clipping.

Parameters:
pane specifies the pane into which the character will be drawn.

x and y specify the coordinate for the upper-left corner of the character.

font is a pointer to a memory buffer holding a binary image of the VFX font file.

character is the index of the desired character within the font.

color_translate If color_translate is NULL, the character's pixels are copied with no color translation or transparency. If color_translate points to a table, all pixel color values are translated through the table at *color_translate before being written to the window. When color translation is active, pixels with a translated color value of PAL_TRANSPARENT (for WINVFX8) or RGB_TRANSPARENT (for WINVFX16) are not written at all, resulting in a "transparency" effect.

In the 15/16bpp versions of WinVFX, color_translate must not be NULL. Instead, an array of 256 16-bit WORDs must be provided to translate the font colors to native RGB values for the display mode in use. An example of how to construct a typical high-color font translation table appears below.

for (i=0; i < 256; i++) font_CLUT[i] = 0;

font_CLUT[SYSFONT_TEXTCOLOR] = (U16) RGB_NATIVE(255,255,255);

font_CLUT[SYSFONT_BKGNDCOLOR] = (U16) RGB_TRANSPARENT;

Because the font lookup table in 15/16bpp modes uses native RGB color values, the application must be prepared to rebuild it when changing video modes.

Returns:
The width of the character drawn.

Example:
VTEST.C

VFX_character_width

C Prototype:
S32 VFX_character_width TC "VFX_character_width" \l "3"

 XE "VFX_character_width" (void *font, S32 character)

Description:
Returns the width (in pixels) of the specified character in a font.

Parameters:
font points to a memory buffer holding a binary image of a VFX font file.

character is the index of the desired character within the font.

Remarks:
It is good practice to base font indexes on the ASCII character set. This enables VFX_string_draw () to accept ASCII text as input and display it in the desired font. As an example, a typical font source image is shown as part of the description of the GETFONT utility program.

Returns:
The character width in pixels.

Example:
VTEST.C

__

C Prototype:
S32 VFX_color_scan TC "VFX_color_scan" \l "3"

 XE "VFX_color_scan" (PANE *pane, U32 *colors)

Description:
Builds a list of colors present in the specified pane, returning the number of unique colors present.

Parameters:
pane parameter specifies the pane to scan.

colors parameter may either point to an array of unsigned long integers, or it may be NULL.

If *colors is a valid pointer (not NULL), a list of unique color palette indices for every pixel in the pane will be written there. See the 'Remarks' below.

If *colors is NULL, then the color list will not be stored.

Remarks:
In 8bpp mode, this function returns the color index values for the colors which are present in the specified pane. In 15/16bpp modes, the values stored correspond to the actual native RGB pixel format for the mode in use. These values may be translated to standard VFX_RGB values with the VFX_RGB_value () function.

This function may be called once with colors = NULL to get the number of colors in the pane. Then the appropriate amount of memory can be allocated before calling this function with colors = Pointer to memory block. (In 8bpp graphics modes, a 256-element array will always be of sufficient size.)

Example:
GETSHAPE.C

VFX_CRGB

C Structure:
typedef struct

{

U8 color;

VFX_RGB rgb;

}

VFX_CRGB TC "VFX_CRGB" \l "3"

 XE "VFX_CRGB" ;

Elements:
color element is a color index number (0-255) for the associated RGB values. This is the 8-bit value which will be used when drawing to a pane or window.

rgb element contains the red, green, and blue color attributes for the associated color index. See the "VFX_RGB Data Structure" definition.

Remarks:
This structure allows any number of colors to be stored along with their palette indices, if desired. The VFX_RGB structure only stores the RGB values.

__

C Structure:
typedef struct pane

{

VFX_WINDOW TC "VFX_WINDOW" \l "3"

 XE "VFX_WINDOW" *window;

S32 x0;

S32 y0;

S32 x1;

S32 y1;

}

PANE TC "PANE" \l "3"

 XE "PANE" ;

Elements:
window element specifies a pointer to the window with which the pane is associated. See the "VFX_WINDOW Data Structure" for more information on windows.
x0,y0 This coordinate pair specifies the upper-left corner of the PANE with respect to the upper-left corner of the VFX_WINDOW.

x1,y1 This coordinate pair specifies the lower-right corner of the PANE, again in VFX_WINDOW space.

Remarks:
A PANE * parameter is part of the declaration for almost every VFX API function which deals with the contents of a VFX_WINDOW. As a rule, the general API functions do not deal directly with VFX_WINDOWs, but require the specification of a PANE.

A PANE defines a clipping region within a VFX_WINDOW. VFX functions automatically clip to VFX_WINDOW boundaries, while PANEs provide a method for clipping within the boundaries of a VFX_WINDOW.

A PANE coordinate system is always defined relative to the VFX_WINDOW with which it is associated. The upper-left corner of a VFX_WINDOW is normally (0,0) in VFX_WINDOW coordinates. A PANE may be defined anywhere in VFX_WINDOW coordinates, whether inside, outside, or overlapping the VFX_WINDOW. The x0,y0 elements of the PANE structure define the upper-left corner of the PANE in VFX_WINDOW coordinates.

VFX functions which write to a PANE require coordinates to be specified relative to that PANE instead of the VFX_WINDOW. The upper-left corner of any PANE in PANE coordinates is (0,0).

PANE_LIST

C Structure:
typedef struct

{

PANE *array;

U32 *flags;

S32 size;

}

PANE_LIST TC "PANE_LIST" \l "3"

 XE "PANE_LIST" ;

Elements:
array element specifies a pointer to an array of PANE structures.
flags element points to an array of U32s which hold various flags for each PANE in array.

size element holds the total number of entries in array.

Remarks:
The PANE_LIST structure and its associated functions allow the application to keep track of portions of one or more windows which have been altered by the application, in order to minimize time spent refreshing unmodified portions of the display screen. Internally, the PANE_LIST functions use an array of PANE structures to maintain a list of altered areas of a VFX_WINDOW ("dirty rectangles" or "dirty panes").

PANE_LIST structures are maintained privately by the VFX_pane_list_. . .() functions.

__

C Structure:
typedef struct

{

S32 x;

S32 y;

}

VFX_POINT TC "VFX_POINT" \l "3"

 XE "VFX_POINT" ;

Elements:
x element specifies the horizontal coordinate value for the point.

y specifies the vertical coordinate value for the point.

Remarks:
This structure is used for points with arbitrary colors. When a color value must be associated with a point, the VERTEX2D structure may be more appropriate.

__

C Structure:
typedef struct

{

U8 r;

U8 g;

U8 b;

}

VFX_RGB TC "VFX_RGB" \l "3"

 XE "VFX_RGB" ;

Elements:
r The r element contains the red component of the color.

g The g element contains the green component of the color.

b The b element contains the blue component of the color.

Remarks:
The VFX_RGB structure stores only the RGB components of color values. The VFX_CRGB structure allows any number of colors to be stored along with their palette indices.

VFX_FONT

C Structure:
typedef struct

{
S32 version;

S32 char_count;

S32 char_height;

S32 font_background;

}

VFX_FONT TC "VFX_FONT" \l "3"

 XE "VFX_FONT" ;

Elements:
char_count The char_count element gives the number of characters defined in the font file.
char_height The char_height element gives the height (in pixels) of the font grid used to create the font file. This value, along with the font_background value described below, is useful for scrolling, line-clearing, etc.

font_background The font_background element gives the color index number used as a background in all of the characters defined in the font file.

Remarks:
The VFX_FONT structure is used to access the header information in VFX font files. The actual character bitmap data follows the header in the file. See the "VFX Font File Format" for more information.

__

C Prototype:
VFX_RGB * VFX_RGB_value TC "VFX_RGB_value" \l "3"

 XE "VFX_RGB_value" (U32 native_pixel)

Description:
Translates a native pixel color value into an 8-8-8 RGB color value.

Parameters:
native_pixel receives a pixel value in the current display mode's native format.

Returns:
A pointer to a statically-defined VFX_RGB structure containing the native pixel's equivalent 8-8-8 RGB value.

Remarks:
The returned VFX_RGB value will remain valid until the next call to VFX_RGB_value().

__

C Prototype:
VFX_RGB * VFX_color_to_RGB TC "VFX_color_to_RGB" \l "3"

 XE "VFX_color_to_RGB" (U32 color)

Description:
Returns an 8-8-8 RGB color value corresponding to a color specification.

Parameters:
color receives a pixel value in any form (either a 0-256 palette index, a 15-bit RGB value with bit 30 set, or a native pixel RGB value with bit 31 set).

Returns:
A pointer to a statically-defined VFX_RGB structure containing the color's equivalent 8-8-8 RGB value.

Remarks:
This function is similar to VFX_RGB_value (), except that it accepts any form of color specification (such as a palette index value, or a value returned returned from the RGB_TRIPLET () macro), rather than native pixel values only.

The returned VFX_RGB value will remain valid until the next call to VFX_color_to_RGB().

VFX_get_palette_entry

C Prototype:
void VFX_get_palette_entry TC "VFX_get_palette_entry" \l "3"

 XE "VFX_get_palette_entry" (S32 index, VFX_RGB *entry)

Description:
Retrieves an RGB color value corresponding to a given 256-color palette index.

Parameters:
index specifies the palette entry to obtain, from 0 to 255.

*entry specifies the location of a VFX_RGB structure which will receive the current palette register's contents.

Remarks:
In high-color graphics modes, the system palette is emulated via an internal array of 256 RGB values. All palette-oriented WinVFX functions work identically in both 8bpp and 15/16bpp modes.

__

C Prototype:
void VFX_get_palette_range TC "VFX_get_palette_range" \l "3"

 XE "VFX_get_palette_range" (S32 index, S32 num_entries, VFX_RGB *entry_list)

Description:
Retrieves an array of RGB color values corresponding to a range of given 256-color palette entries.

Parameters:
index specifies the first palette entry to obtain, from 0 to 255.

num_entries specifies the number of palette entries to read.

*entry_list specifies the location of an array of num_entries VFX_RGB structures which will receive the palette registers' contents.

Remarks:
In high-color graphics modes, the system palette is emulated via an internal array of 256 RGB values. All palette-oriented WinVFX functions work identically in both 8bpp and 15/16bpp modes.

__

C Prototype:
void VFX_lock_window_surface TC "VFX_lock_window_surface" \l "3"

 XE "VFX_lock_window_surface" (VFX_WINDOW *window, S32 surface)

Description:
Assigns the video buffer to the specified window, and prepares for writing.

Parameters:
*window specifies the window through which video buffer access is to take place.

surface specifies one of two constants:

VFX_FRONT_SURFACE: Lock and assign the front (visible) buffer to the window

VFX_BACK_SURFACE: Lock and assign the back (hidden) buffer to the window

Remarks:
Normally the constant VFX_BACK_SURFACE (equivalent to SAL_BACK_SURFACE) should be passed as the surface parameter. Some display adapter/driver combinations may not permit the front buffer to be modified directly by the application.

The window will remain usable for video output until the next call to VFX_unlock_window_surface ().

Internally, this function locks the specified video surface by calling SAL_lock_surface (), and assigns the resulting pointer to the window by calling VFX_assign_window_buffer ().

VFX_pane_list_get_entry

C Prototype:
PANE * VFX_pane_list_get_entry TC "VFX_pane_list_get_entry" \l "3"

 XE "VFX_pane_list_get_entry" (PANE_LIST *list, S32 entry_num)

Description:
Retrieves a pointer to a PANE previously added to a PANE_LIST.

Parameters:
list is a pointer to a PANE_LIST structure previously constructed by VFX_pane_list_construct ().

entry_num specifies an entry number returned by VFX_pane_list_add () or VFX_pane_list_add_area ().

Returns:
A pointer to the specified PANE in the list.

__

C Prototype:
S32 VFX_pane_list_identify_point TC "VFX_pane_list_identify_point" \l "3"

 XE "VFX_pane_list_identify_point" (PANE_LIST *list, S32 x, S32 y)

Description:
Identifies the pane in a PANE_LIST which contains a specified point.

Parameters:
list is a pointer to a PANE_LIST structure previously constructed by VFX_pane_list_construct ().

x,y specify the location of a contained point to search for.

Returns:
The entry number of the first PANE in the list which contains the specified point, or -1 if no PANEs in the list contain the specified point

__

C Prototype:
U32 VFX_pixel_value TC "VFX_pixel_value" \l "3"

 XE "VFX_pixel_value" (VFX_RGB *VFX_RGB)

Description:
Returns the native pixel value for an 8-8-8 RGB triplet .

Parameters:
VFX_RGB specifies an 8-8-8 RGB triplet.

Returns:
a 16-bit word (15/16bpp modes) or an 8-bit byte (8bpp modes) representing the closest approximation to the specified RGB value based on the current display mode.

Remarks:
In order to pass the returned value to any VFX primitives requiring a color specification, the application should OR the value returned by VFX_pixel_value() with the constant 80000000h (bit 31=1) to specify that the color being passed is a native pixel value.

VFX_set_display_mode

C Prototype:
S32 VFX_set_display_mode TC "VFX_set_display_mode" \l "3"

 XE "VFX_set_display_mode" (S32 display_size_X, S32 display_size_Y, S32 display_bpp, S32 initial_window_mode, S32 allow_mode_switch)

Description:
Calls the system abstraction layer (SAL) to set the desired display mode, and builds all necessary internal lookup tables to perform color translation for subsequent primitive calls.

Parameters:
display_size_X specifies the desired X resolution (width) for the new display mode.

display_size_Y specifies the desired Y resolution (height) for the new display mode.

display_bpp specifies the desired bits-per-pixel color depth for the new display mode.

initial_window_mode should receive one of three possible values, defined in WINVFX.H:

VFX_FULLSCREEN_MODE // Set fullscreen DirectDraw mode

VFX_WINDOW_MODE // Set windowed mode, using either

 CreateDIBSection() or DirectDraw for screen refreshes

 (see SAL_USE_DDRAW_IN_WINDOW preference for more

 information)

VFX_TRY_FULLSCREEN // Try fullscreen mode, falling back to windowed mode if no

 fullscreen DirectDraw support is available for the

 specified mode

allow_mode_switch, if TRUE, allows the user to switch between windowed and fullscreen mode with the ALT-ENTER key combination

Returns:
Non-zero if the mode was successfully set; zero if an error occurred.

Remarks:
When using SAL with the WINVFX libraries, this function should be called by the application instead of the analogous SAL_set_display_mode () function.

Applications linked with WINVFX16.DLL should pass 16 as the display_bpp parameter.

Applications linked with WINVFX8.DLL should pass 8 as the display_bpp parameter.

Under some circumstances, it may be desirable for an application which runs in a high-color display mode with WINVFX16.DLL to make a limited number of calls to WINVFX8.DLL. An example of this would include the TGA2SHP utility program's use of the VFX_shape_scan () function, which is provided only by WINVFX8.DLL. It is permissible for an application running in 15/16bpp mode to call most primitive functions in WINVFX8.DLL. Note that only 16-bpp applications (apps which call VFX_set_display_mode () in WINVFX16.DLL) should attempt to do this. If an 8-bpp application calls any function in WINVFX16.DLL, unexpected results may occur since no valid 16-bpp display pixel format is available for use by WINVFX16.

VFX_set_palette_entry

C Prototype:
void VFX_set_palette_entry TC "VFX_set_palette_entry" \l "3"

 XE "VFX_set_palette_entry" (S32 index, VFX_RGB *entry, S32 wait_flag)

Description:
Associates an RGB color value with a given 256-color palette index.

Parameters:
index specifies the palette entry to set, from 0 to 255.

*entry specifies the location of a VFX_RGB structure which contains the desired palette register value.

wait_flag is reserved for future use, and should be 0 in all current versions of WinVFX.

Remarks:
In high-color graphics modes, the system palette is emulated via an internal array of 256 RGB values. All palette-oriented WinVFX functions work identically in both 8bpp and 15/16bpp modes.

__

C Prototype:
void VFX_set_palette_range TC "VFX_set_palette_range" \l "3"

 XE "VFX_set_palette_range" (S32 index, S32 num_entries, VFX_RGB *entry_list, S32 wait_flag)

Description:
Associates an array of RGB color values with a corresponding range of 256-color palette entries.

Parameters:
index specifies the first palette entry to set, from 0 to 255.

num_entries specifies the number of palette entries to set.

*entry_list specifies the location of an array of num_entries VFX_RGB structures which contain the desired palette register values.

wait_flag is reserved for future use, and should be 0 in all current versions of WinVFX.

Remarks:
In high-color graphics modes, the system palette is emulated via an internal array of 256 RGB values. All palette-oriented WinVFX functions work identically in both 8bpp and 15/16bpp modes.

VFX_shape_area_translate

C Prototype:
void VFX_shape_area_translate TC "VFX_shape_area_translate" \l "3"

 XE "VFX_shape_area_translate" (PANE *pane, VFX_SHAPETABLE *shape_table, S32 shape_number, S32 hotX, S32 hotY, void *buffer, S32 rot, S32 x_scale, S32 y_scale, U32 flags, void *lookaside)

Description:
Draws a standard VFX shape to an intermediate buffer with optional color translation, and then translates all pixels in the destination pane which would coincide with non-transparent pixels in the specified shape.

Parameters:
*pane specifies the destination pane.

*shape_table is a pointer to a memory buffer containing a binary image of the .SHP file.

shape_number is the index number of the desired shape in the shape table.

hotX, hotY specify the location where the shape will be drawn. The shape's hot spot will be placed at the specified location. All scaling, rotation, and mirroring will take place with reference to this point.

*buffer must point to a block of memory which is at least large enough to contain a bitmapped image of the specified VFX shape, rendered at normal size and zero rotation. In the case of 256-color shapes, the size of the buffer should be at least equal in bytes to the shape's width in pixels times its height in pixels. Internally, this memory will be used as an intermediate window buffer.

rot gives the desired rotation factor in tenths of a degree, from 0 to 3,599. Rotation takes place in a clockwise direction from 12:00. Rotation factors outside the 3600 tenth-degree range will be normalized by adding or subtracting increments of 3600 tenth-degrees.

x_scale gives the desired scaling factor for the shape's X axis, in 16.16 fixed-point notation. 1:1 scaling in X would correspond to an x_scale factor of 0x10000, while 0.5:1 scaling would result from an x_scale of 0x8000. Similarly, 2:1 scaling would be specified by an x_scale of 0x20000. Negative values result in reflection across the origin; e.g., 0xfffe0000 would yield 2:1 scaling and "flipping" in X.

y_scale gives the desired scaling factor for the shape's Y axis, in 16.16 fixed-point notation. It is otherwise identical to x_scale.

flags may be set to ST_REUSE to cause the entire buffer-rendering first pass to be skipped, resulting in much greater performance in cases where the source shape data and buffer contents remain valid from one call to the next.

*lookaside specifies a color-translation table to be used to transform the colors underneath the non-transparent portions of the specified shape.

Remarks:
This function operates exactly as does VFX_shape_transform (), but instead of drawing the transformed shape, performs a destination color translation via *lookaside at each non-transparent pixel in the transformed shape. The actual color information in the shape image is ignored. Consequently, the ST_XLAT flag has no effect on the behavior of this function.

Internally, color 255 is assumed to be "transparent" for the WinVFX8 library, while color 0xFFFE is assumed to be transparent by the relevant primitives in the WinVFX16 library. These values are equated in VFX.H to PAL_TRANSPARENT and RGB_TRANSPARENT, respectively. The function begins its first pass by clearing the buffer to the transparent color key, then drawing the specified shape against this background. Therefore, if the shape has any transparent areas at all, they will appear in the resulting intermediate image as the transparent color key. This implies that the reserved color key value, even if it occurs within the original shape as a non-transparent color, will be treated as transparent during the function's second (inverse transformation) pass.

VFX_triplet_value

C Prototype:
U32 VFX_triplet_value TC "VFX_triplet_value" \l "3"

 XE "VFX_triplet_value" (U32 r, U32 g, U32 b)

Description:
Returns the native pixel value for an 8-8-8 RGB triplet

Parameters:
r,g,b specify an 8-8-8 RGB triplet.

Returns:
A 16-bit word (15/16bpp modes) or 8-bit byte (8bpp modes) representing the closest approximation to the specified RGB value based on the current display mode.

Remarks:
This function is identical to VFX_pixel_value (), except that it accepts the incoming RGB value as three discrete parameters rather than as a pointer to a VFX_RGB structure.

In order to pass the returned value to any VFX primitives requiring a color specification, the application should OR the value returned by VFX_pixel_value() with the constant 80000000h (bit 31=1) to specify that the color being passed is a native pixel value.

__

C Prototype:
void VFX_unlock_window_surface TC "VFX_unlock_window_surface" \l "3"

 XE "VFX_unlock_window_surface" (VFX_WINDOW *window, S32 perform_flip)

Description:
Releases a window surface lock obtained from VFX_lock_window_surface (), optionally performing a page-flip operation to display the previously-locked surface.

Parameters:
*window specifies the window whose buffer is to be unlocked.

perform_flip, if TRUE, causes SAL to perform a page flip (DirectDraw mode) or StretchBlt() (CreateDIBSection mode) if the specified window is associated with the video surface's back buffer.

Remarks:
The perform_flip parameter has no effect if the window lock was originally obtained by calling VFX_lock_window_surface() with the VFX_FRONT_SURFACE parameter.

__

C Prototype:
void VFX_Cos_Sin TC "VFX_Cos_Sin" \l "3"

 XE "VFX_Cos_Sin" (S32 Angle, F16 *Cos, F16 *Sin)

Description:
Returns the sine and cosine of an angle.

Parameters:
Angle specifies the input angle in tenths (1/10) of a degree.

Cos specifies the destination for the 16.16 fixed-point cosine of the angle.

Sin specifies the destination for the 16.16 fixed-point sine of the angle.

Returns:
None.

Example:
VTEST

VFX_dithered_Gouraud_polygon

C Prototype:
void VFX_dithered_Gouraud_polygon TC "VFX_dithered_Gouraud_polygon" \l "3"

 XE "VFX_dithered_Gouraud_polygon" (PANE *pane, F16 dither_amount, S32 vcnt, VERTEX2D *vlist)

Description:
Draws a vcnt-sided convex polygon described by the points and colors in vlist.

Parameters:
pane specifies the pane where the polygon will be drawn.

vcnt specifies the number of vertices in the polygon and in vlist.

vlist is a pointer to a list of VERTEX2D structured points. These points describe the location and color of each corner of the polygon.

The points in vlist must be ordered in either clockwise or counter-clockwise sequence around the polygon. For example: Consider a four cornered polygon with vertices are numbered clockwise 1,2,3, and 4. There are four clockwise and four counter-clockwise sequences for correctly listing these vertices in vlist.

Clockwise:

{1,2,3,4}, {2,3,4,1}, {3,4,1,2}, {4,1,2,3}

Counter-Clockwise:

{4,3,2,1}, {3,2,1,4}, {2,1,4,3}, {1,4,3,2}

Any other order of points in vlist will cause the polygon to be drawn improperly.

dither_amount

The dither_amount parameter specifies a positive or negative value to be added to the color index of every other pixel drawn. See the Remarks section for information on setting up the palette.

Returns:
None.

Remarks:
The color index of each pixel in the polygon is computed by interpolating between the color indexes of each vertex. This requires the palette be setup with appropriate colors at each color index between those used at the polygon vertices. For example: Consider a rectangle which is to be shaded from dark red (color 10) at vertex A to bright red (color 20) at vertex B. The palette colors 11 - 19 should contain the intermediate shades between dark and bright red.

The dither_amount parameter is specified in 16:16 fixed-point decimal form. Judicious application of subinteger (< 1) dithering can virtually eliminate the Mach bands associated with palettized Gouraud shading. Dithering with factors greater than 0.5 (0x8000 in 16:16 fixed-point notation) is possible, but may require valid colors to be defined at color indexes outside those specified for the polygon's vertices. The number of extra colors depends on the dither_amount. In the example above: Colors must be defined at color indices 21 & 22 if a dither_amount of 2 (0x20000) is used. If the dither_amount is -1 (0xffff0000) then color index 9 will need to be defined.

This function will handle convex and horizontally concave polygons only. Polygons which can be intersected by a horizontal line through more than two edges cannot be rendered by this function.

This function is supported by the WINVFX8 library only.

VFX_ellipse_draw

C Prototype:
void VFX_ellipse_draw TC "VFX_ellipse_draw" \l "3"

 XE "VFX_ellipse_draw" (PANE *pane, S32 xc, S32 yc, S32 width, S32 height, U32 color)

Description:
Draws an orthogonal ellipse in the specified pane with the specified color.

Parameters:
pane specifies the target pane where the ellipse will be drawn.

xc and yc specify the center of the ellipse in pane coordinates.

width specifies the horizontal width of the ellipse (in pixels) at its center.

height specifies the vertical height of the ellipse (in pixels) at its center.

color specifies the color of the ellipse.

Returns:
None.

Remarks:
See also: VFX_ellipse_fill ().

Example:
VTEST.C

__

C Prototype:
void VFX_ellipse_fill TC "VFX_ellipse_fill" \l "3"

 XE "VFX_ellipse_fill" (PANE *pane, S32 xc, S32 yc, S32 width, S32 height, U32 color)

Description:
Draws and fills an orthogonal ellipse in the specified pane with the specified color.

Parameters:
pane specifies the target pane where the ellipse will be drawn.

xc and yc specify the center of the ellipse in pane coordinates.

width specifies the horizontal width of the ellipse (in pixels) at its center.

height specifies the vertical height of the ellipse (in pixels) at its center.

color specifies the border and fill color of the ellipse.

Returns:
None.

Remarks:
See also: VFX_ellipse_draw ().

Example:
VTEST.C

__

C Prototype:
F16 VFX_fixed_mul TC "VFX_fixed_mul" \l "3"

 XE "VFX_fixed_mul" (F16 M1, F16 M2, F16 *result)

Description:
Multiplies two 16.16 fixed-point values with rounding.

Parameters:
M1 and M2 are the two 16.16 fixed-point values to be multiplied.

result specifies the destination for the 16.16 fixed-point multiplication result.

Returns:
16.16 bit rounded fixed-point multiplication result.

Example:
VTEST.C

VFX_flat_polygon

C Prototype:
void VFX_flat_polygon TC "VFX_flat_polygon" \f C \l "3"

 XE "VFX_flat_polygon" (PANE *pane, S32 vcnt, VERTEX2D *vlist)

Description:
Draws a vcnt-sided convex polygon described by the points in vlist using a single color.

Parameters:
pane specifies the pane where the polygon will be drawn.

vcnt specifies the number of vertices in the polygon and in vlist.

vlist is a pointer to a list of VERTEX2D structured points. These points describe the location of each corner of the polygon.

The points in vlist must be ordered in either clockwise or counter-clockwise sequence around the polygon. For example: Consider a four cornered polygon with vertices are numbered clockwise 1,2,3, and 4. There are four clockwise and four counter-clockwise sequences for correctly listing these vertices in vlist.

Clockwise:

{1,2,3,4}, {2,3,4,1}, {3,4,1,2}, {4,1,2,3}

Counter-Clockwise:

{4,3,2,1}, {3,2,1,4}, {2,1,4,3}, {1,4,3,2}

Any other order of points in vlist will cause the polygon to be drawn improperly.

The color of the first vertex in vlist is used as the fill color for the polygon.

Returns:
None.

Remarks:
This function will handle convex and horizontally concave polygons only. Polygons which can be intersected by a horizontal line through more than two edges cannot be rendered by this function.

__

C Prototype:
S32 VFX_font_height TC "VFX_font_height" \f C \l "3"

 XE "VFX_font_height" (void *font)

Description:
Returns the height (in pixels) of the specified font.

Parameters:
font is a pointer to a memory buffer holding a binary image of a font file.

Returns:
The font height in pixels.

Remarks:
All characters in a font assume the height of the cells used in the font's source image. This height is normally used for text window scrolling.

Example:
VTEST.C

VFX_GIF_draw

C Prototype:
S32 VFX_GIF_draw TC "VFX_GIF_draw" \l "3"

 XE "VFX_GIF_draw" (PANE *pane, U8 *GIF_buffer)

Description:
Draws a GIF formatted image to the specified pane.

Parameters:
pane specifies the pane where the image will be drawn.

GIF_buffer is a pointer to a memory buffer containing a binary image of the .GIF file.

Returns:
The background color of the GIF image.

Remarks:
Unlike the DOS version of VFX, the WinVFX libraries do not require the application to allocate a scratch buffer for GIF decoding.

Example:
SHOWPIC.C

__

C Prototype:
void VFX_GIF_palette TC "VFX_GIF_palette" \l "3"

 XE "VFX_GIF_palette" (U8 *GIF_buffer, VFX_RGB *palette)

Description:
Returns palette information from GIF file in a VFX_RGB array.

Parameters:
GIF_buffer is a pointer to a memory buffer containing a binary image of the .GIF file.

palette is a pointer to an array of 256 VFX_RGB values.

Returns:
None.

Example:
SHOWPIC.C

__

C Prototype:
S32 VFX_GIF_resolution TC "VFX_GIF_resolution" \l "3"

 XE "VFX_GIF_resolution" (U8 *GIF_buffer)

Description:
Returns the x,y resolution (image size) of the GIF xe "GIF "image in pixels.

Parameters:
GIF_buffer is a pointer to a memory buffer containing a binary image of the .GIF file.

Returns:
x resolution in the upper 16-bits of the 32-bit return value. Shift the return value right 16-bits to obtain the x resolution by itself.

y resolution in the lower 16-bits of the 32-bit return value. Bit-wise AND the return value with 0x0ffff to obtain the y resolution by itself.

Example:
VTEST.C

VFX_Gouraud_polygon

C Prototype:
void VFX_Gouraud_polygon TC "VFX_Gouraud_polygon" \l "3"

 XE "VFX_Gouraud_polygon" (PANE *pane, S32 vcnt, VERTEX2D vlist)

Description:
Draws a vcnt-sided convex polygon described by the points and colors in vlist.

Parameters:
pane specifies the pane where the polygon will be drawn.

vcnt specifies the number of vertices in the polygon and in vlist.

vlist is a pointer to a list of VERTEX2D structured points. These points describe the location and color of each corner of the polygon.

The points in vlist must be ordered in either clockwise or counter-clockwise sequence around the polygon. For example: Consider a four cornered polygon with vertices are numbered clockwise 1,2,3, and 4. There are four clockwise and four counter-clockwise sequences for correctly listing these vertices in vlist.

Clockwise:

{1,2,3,4}, {2,3,4,1}, {3,4,1,2}, {4,1,2,3}

Counter-Clockwise:

{4,3,2,1}, {3,2,1,4}, {2,1,4,3}, {1,4,3,2}

Any other order of points in vlist will cause the polygon to be drawn improperly.

Returns:
None.

Remarks:
The color index of each pixel in the polygon is computed by interpolating between the color indexes of each vertex. This requires the palette be set up with appropriate colors at each color index between those used at the polygon vertices. For example: Consider a rectangle which is to be shaded from dark red (color 10) at vertex A to bright red (color 20) at vertex B. The palette colors 11 - 19 should contain the intermediate shades between dark and bright red.

VFX_Gouraud_polygon()is a more visually precise Gouraud shading function than VFX_dithered_Gouraud_polygon (). With a dither factor of zero, VFX_dithered_Gouraud_polygon() operates with half the spatial color resolution of this function. In practice, this seldom produces undesirable visual effects.

This function will handle convex and horizontally concave polygons only. Polygons which can be intersected by a horizontal line through more than two edges cannot be rendered by this function.

This function is supported by the WINVFX8 library only.

VFX_ILBM_draw

C Prototype:
S32 VFX_ILBM_draw TC "VFX_ILBM_draw" \l "3"

 XE "VFX_ILBM_draw" (PANE *pane, U8 *ILBM_buffer)

Description:
Draws an ILBM (or newer PBM) formatted image to the specified pane.

Parameters:
pane specifies the pane where the image will be drawn.

ILBM_buffer is a pointer to a memory buffer containing a binary image of the ILBM file.

Returns:
The background color of the ILBM image.

Remarks:
This function is compatible with 256-color ILBM files written by any version of Deluxe Paint II. Only 256-color images are supported, and the ILBM file must not contain a stencil plane.

Example:
VTEST.C

__

C Prototype:
void VFX_ILBM_palette TC "VFX_ILBM_palette" \l "3"

 XE "VFX_ILBM_palette" (U8 *ILBM_buffer, VFX_RGB *palette)

Description:
Returns palette information from a Deluxe Paint-compatible ILBM file in a VFX_RGB array.

Parameters:
ILBM_buffer is a pointer to a memory buffer containing a binary image of the ILBM file.

palette is a pointer to an array of 256 VFX_RGB values.

Returns:
None.

Remarks:
This function is compatible with 256-color ILBM files written by any version of Deluxe Paint II. Only 256-color images are supported, and the ILBM file must not contain a stencil plane.

Example:
SHOWPIC.C

__

C Prototype:
S32 VFX_ILBM_resolution TC "VFX_ILBM_resolution" \l "3"

 XE "VFX_ILBM_resolution" (U8 *ILBM_buffer)

Description:
Returns the x,y resolution (image size) of the ILBM image in pixels.

Parameters:
ILBM_buffer is a pointer to a memory buffer containing a binary image of the ILBM file.

Returns:
x resolution in the upper 16-bits of the 32-bit return value. Shift the return value right 16 bits to obtain the x resolution by itself.

y resolution in the lower 16-bits of the 32-bit return value. Bit-wise AND the return value with 0x0ffff to obtain the y resolution by itself.

Remarks:
This function is compatible with 256-color ILBM files written by any version of Deluxe Paint II. Only 256-color images are supported, and the ILBM file must not contain a stencil plane.

Example:
SHOWPIC.C

VFX_illuminate_polygon

C Prototype:
void VFX_illuminate_polygon TC "VFX_illuminate_polygon" \l "3"

 XE "VFX_illuminate_polygon" (PANE *pane, F16 dither_amount, S32 vcnt, VERTEX2D *vlist)

Description:
Modifies each pixel within a vcnt-sided convex polygon described by the points and colors in vlist, by adding a Gouraud-interpolated value to each pixel within the polygon. This function is useful for implementing two-pass Gouraud lighting for rendered scenes.

Parameters:
pane specifies the pane containing the polygon to be modified.

vcnt specifies the number of vertices in the polygon and in vlist.

vlist is a pointer to a list of VERTEX2D structured points. These points describe the location of each corner of the polygon, as well as the color value to be interpolated and added to the points at each vertex and within the polygon.

The points in vlist must be ordered in either clockwise or counter-clockwise sequence around the polygon. For example: Consider a four cornered polygon with vertices are numbered clockwise 1,2,3, and 4. There are four clockwise and four counter-clockwise sequences for correctly listing these vertices in vlist.

Clockwise:

{1,2,3,4}, {2,3,4,1}, {3,4,1,2}, {4,1,2,3}

Counter-Clockwise:

{4,3,2,1}, {3,2,1,4}, {2,1,4,3}, {1,4,3,2}

Any other order of points in vlist will cause the polygon to be drawn improperly.

dither_amount

The dither_amount parameter specifies a positive or negative value to be added to the color index of every other pixel drawn. See the Remarks section for information on setting up the palette.

Returns:
None.

Remarks:
The color index of each pixel in the polygon is computed by interpolating between the color indexes of each vertex and adding the resulting value to the existing color index values within the polygonal image area.

Subinteger (< 1) dithering can virtually eliminate the Mach bands associated with palettized Gouraud shading. Dithering with factors greater than 0.5 (0x8000 in 16:16 fixed-point notation) is possible, but may require valid colors to be defined at color indexes outside those specified for the polygon's vertices. The number of extra colors depends on the dither_amount. In the example above: Colors must be defined at color indices 21 & 22 if a dither_amount of 2 (0x20000) is used. If the dither_amount is -1 (0xffff0000) then color index 9 will need to be defined.

This function will handle convex and horizontally concave polygons only. Polygons which can be intersected by a horizontal line through more than two edges cannot be rendered by this function.

This function is supported by the WINVFX8 library only.

VFX_line_draw

C Prototype:
S32 VFX_line_draw TC "VFX_line_draw" \l "3"

 XE "VFX_line_draw" (PANE *panep, S32 x0, S32 y0, S32 x1, S32 y1, S32 mode, S32 parm)

Description:
This function clips and draws a line to a pane.

Parameters:
panep specifies the pane where the line will be drawn.

x0, y0 specify the initial endpoint of the line.

x1, y1 specify the final endpoint of the line.

mode LD_DRAW || LD_TRANSLATE || LD_EXECUTE

The mode parameter specifies the operation to perform on each point in the line.

If mode is LD_DRAW (0), the line is drawn in a solid color specified by parm.

If mode is LD_TRANSLATE (1), the line is drawn with color translation. Each pixel along the path of the line is replaced with the corresponding entry in the color translation table specified by parm.

If mode is LD_EXECUTE (2), the line is drawn with the aid of a callback function specified by parm. For each point on the line, VFX_line_draw () executes the callback function, passing it the coordinates of the point.

The callback function must use cdecl parameter passing, and its parameter list must be (S32 x, S32 y). The function's return type is not important; VFX_line_draw() ignores the return value (if any).

Example:
void cdecl callback_function(S32 x, S32 y)

parm
color or

pointer to a color translation table or

pointer to a caller-provided function

The parm parameter has varying purposes which are dependent upon the mode selected. The mode parameter description above describes the use of parm in detail.

Returns:
 2
The line was completely outside the pane and was not drawn.

 1
Some of the line was inside the pane and was drawn after clipping.

 0
All of the line was inside the pane and was drawn without clipping

-1
Bad window. The window was malformed.

-2
Bad pane. The pane was malformed or completely outside its

window.

Remarks:
VFX_line_draw() clips the line to the pane. The locus of the clipped line is the same for all modes and is guaranteed to be identical to the intersection of the loci of the unclipped line and the pane. Moreover, plotting always proceeds from (x0,y0) to (x1,y1) regardless of the relative orientation of the two points.

The locus of the clipped line consists of all points in the pane whose minor-axis distance from the ideal line is less than or equal to 1/2, with the following exception. In places where the ideal line passes exactly halfway between two pixels which share the same major-axis coordinate, only one of the two points is plotted. The selection method is unspecified, but is consistent throughout the line.

The minor-axis distance from a point P to a line L is the absolute difference between the minor-axis coordinates of P and Q where Q is the point on L having the same major-axis coordinate as P. (Here, major-axis and minor axis are determined by L. The major axis is the axis in which the endpoints of L differ the most. Likewise the minor-axis is the one in which the endpoints differ the least).

VFX_line_draw() is reentrant, so callback functions can use it.

The constants LD_DRAW, LD_TRANSLATE, LD_EXECUTE are defined in VFX.H.

Example:
VTEST.C and the following:

#define HELIOTROPE 147

U8 color_negative[256];

void cdecl DrawDiamond (S32 x, S32 y)

VFX_line_draw (pane, Px, Py, Qx, Qy, LD_DRAW, HELIOTROPE);

draws a line from (Px,Py) to (Qx,Qy) using the color HELIOTROPE.

VFX_line_draw (pane, Px, Py, Qx, Qy, LD_TRANSLATE, (S32) color_negative);

draws a line from (Px,Py) to (Qx,Qy) replacing each pixel with its color negative (as specified by the table color_negative).

VFX_line_draw (pane, Px, Py, Qx, Qy, LD_EXECUTE, (S32) DrawDiamond);

draws a line of diamonds from (Px,Py) to (Qx,Qy) using the caller-provided function DrawDiamond().

VFX_map_polygon

C Prototype:
void VFX_map_polygon TC "VFX_map_polygon" \l "3"

 XE "VFX_map_polygon" (PANE *pane, S32 vcnt, VERTEX2D *vlist, VFX_WINDOW *texture, U32 flags)

Description:
Draws and fills a convex polygon with the specified texture and color translation.

Parameters:
pane specifies the pane where the polygon will be drawn.

vcnt specifies the number of vertices in the polygon and in vlist.

vlist is a pointer to a list of VERTEX2D structured points. These points describe the PANE and TEXTURE location of each corner of the polygon.

The points in vlist must be ordered in either clockwise or counter-clockwise sequence around the polygon. For example: Consider a four cornered polygon with vertices are numbered clockwise 1,2,3, and 4. There are four clockwise and four counter-clockwise sequences for correctly listing these vertices in vlist.

Clockwise:

{1,2,3,4}, {2,3,4,1}, {3,4,1,2}, {4,1,2,3}

Counter-Clockwise:

{4,3,2,1}, {3,2,1,4}, {2,1,4,3}, {1,4,3,2}

Any other order of points in vlist will cause the polygon to be drawn improperly.

texture points to a VFX_WINDOW holding the texture map to be applied to the polygon. The texture image must be drawn or otherwise displayed in the VFX_WINDOW prior to calling VFX_map_polygon ().
flags VFX.H defines two flag values for this parameter. Either, both, or none of the flags may be set; in the latter case, flags should equal 0. Maximum rendering performance is obtained with flags set to 0.

MP_XLAT: When this flag is set, every pixel value written to the destination pane is translated through the 256-byte table last registered with the VFX_map_lookaside () function. This is useful for Lambert (flat) shading of textured polygons, as well as for "haze" and other visual effects. To avoid undefined results, MP_XLAT should be used only after a valid lookaside table has been passed to VFX_map_lookaside().

MP_XP: This flag, when set, inhibits pixel writes for all pixels whose value is 255. If the MP_XLAT flag is set, the translated color value is used for the comparison. This flag is invaluable when irregularly-shaped objects (such as bomb craters or bullet holes) must be mapped with transparency onto a surface.

Returns:
None.

Remarks:
This function will handle convex and horizontally concave polygons only. Polygons which can be intersected by a horizontal line through more than two edges cannot be rendered by this function.

This function is supported by the WINVFX8 library only.

VFX_pane_construct

C Prototype:
PANE *VFX_pane_construct TC "VFX_pane_construct" \l "3"

 XE "VFX_pane_construct" (VFX_WINDOW *window, S32 x0, S32 y0, S32 x1, S32 y1)

Description:
The VFX_pane_construct() function allocates and returns a pointer to a PANE structure. The PANE structure's x0, y0, x1, and y1 members are set to x0, y0, x1, and y1, respectively.

Parameters:
window specifies the VFX_WINDOW to be associated with the new PANE.

x0,y0 This coordinate pair specifies the upper-left corner of the PANE with respect to the upper-left corner of the VFX_WINDOW.

x1,y1 This coordinate pair specifies the lower-right corner of the PANE, again in VFX_WINDOW space.

Returns:
*PANE
A pointer to the constructed PANE.

NULL
If the structure allocation fails, VFX_pane_construct () returns NULL.

Remarks:
This function uses the C runtime malloc () function for memory management.

Example:

VFX_pane_copy

C Prototype:
S32 VFX_pane_copy TC "VFX_pane_copy" \l "3"

 XE "VFX_pane_copy" (PANE *source, S32 Sx, S32 Sy, PANE *target, S32 Tx, S32 Ty, S32 fill)

Description:
This function copies a rectangular area of pixels from one pane to another pane.

Parameters:
source specifies the pane from which pixels are to be copied.

target specifies the pane to which pixels are to be copied.

The source and target panes may be associated with the same window or with different windows. VFX_pane_copy() clips each pane to its window before beginning the copy operation.

Sx and Sy specify a reference point in the source pane.

Tx and Ty specify a reference point in the target pane.

The reference points (Sx,Sy) and (Tx,Ty) establish the desired positional correspondence between the source and target panes. The pixel at (Sx,Sy) in the source pane corresponds to the pixel at (Tx,Ty) in the target pane. Likewise, the pixel at (Sx+i,Sy+j) in the source pane corresponds to the pixel at (Tx+i,Ty+j) in the target pane for all integer values i and j. Note that the reference points may themselves lie outside their panes.

Pixels in the source pane which have no corresponding pixels in the target pane are ignored. Pixels in the target pane which have no corresponding pixels in the source pane are left unchanged.

fill can be used to substitute a solid color for the pixels from the source pane. The parameters are discussed in detail below.

If the fill parameter is set to a color number (0 to 255), VFX_pane_copy() performs a pane fill instead of a pane copy. The target pixels which would ordinarily receive data from the source pane will instead be filled with the color specified by the fill parameter. VFX_pane_scroll () uses this feature to fill the vacated portions of the pane after scrolling.

If the fill parameter is not a color number, an ordinary pane copy is performed. By convention, the value NO_COLOR (-1) is used.

Returns:
 0
OK.

-1
Bad window. The height or width of one of the panes' windows is

less than one.

-2
Bad pane. The height or width of one of the panes is less than

one, or one of the panes lies completely off its window (which is

legal).

-3
Disjoint panes. No pixels in the source pane have corresponding

pixels in the target pane.

Remarks:
VFX_pane_copy() will not overwrite source data with target data until the source data has been read; otherwise, problems could arise when the source and destination panes overlap within a single window. VFX_pane_copy() avoids the problem by choosing an appropriate copy order; e.g., bottom-to-top, right-to-left.

Example:
VTEST.C

VFX_pane_destroy

C Prototype:
void VFX_pane_destroy TC "VFX_pane_destroy" \l "3"

 XE "VFX_pane_destroy" (PANE*pane)

Description:
VFX_pane_destroy() frees the memory associated with a PANE structure which was previously created by VFX_pane_construct ().

Parameters:
pane specifies the PANE to be destroyed.

Returns:
None.

Remarks:
This function uses the C runtime free () function for memory management.

Example:

__

C Prototype:
S32 VFX_pane_list_add TC "VFX_pane_list_add" \l "3"

 XE "VFX_pane_list_add" (PANE_LIST *list, PANE *target)

Description:
Adds the specified PANE to a specified list of PANEs.

Parameters:
list is a pointer to a PANE_LIST structure previously constructed by VFX_pane_list_construct ().
target is a pointer to the PANE structure to be added to list.

Returns:
-1

No free entries available in PANE_LIST.

0 to n_entries-1

Index into PANE_LIST.

Remarks:
When the application writes to a given area of a VFX_WINDOW for which pane list management is used, the area's boundaries should be registered by means of a call to VFX_pane_list_add() or VFX_pane_list_add_area (). These two functions are identical in operation, except that a pointer to an existing PANE may be passed to VFX_pane_list_add(), while an explicit rectangular area and VFX_WINDOW pointer are expected by VFX_pane_list_add_area().

Since VFX_pane_list_add() copies PANE *target into the PANE_LIST array, it is permissible to subsequently destroy, alter, or re-use PANE *target.

Both functions return an index value from 0 to n_entries-1, where n_entries is the number of PANE_LIST entries reserved by the VFX_pane_list_construct() function. This value may be maintained by the application for later use by the VFX_pane_list_delete_entry () function, described below, or it may be disregarded altogether. A returned value of -1 indicates that no free entries were available in the pane list.

The VFX_WINDOW associated with the PANE passed to this function is treated as a "staging window" for the physical display screen. The pane boundaries passed to the function will be refreshed by VFX_pane_list_refresh () at the same physical screen coordinates.

Example:

VFX_pane_list_add_area

C Prototype:
S32 VFX_pane_list_add_area TC "VFX_pane_list_add_area" \l "3"

 XE "VFX_pane_list_add_area" (PANE_LIST *list, VFX_WINDOW *window, S32 x0, S32 y0, S32 x1, S32 y1)

Description:
Creates a PANE using the specified size and VFX_WINDOW, and adds that PANE to a specified list of PANEs.

Parameters:
list is a pointer to a PANE_LIST structure previously constructed by VFX_pane_list_construct ().

window specifies the VFX_WINDOW to be associated with the new PANE.
x0,y0 specifies the upper-left corner of the PANE with respect to the upper-left corner of the VFX_WINDOW.

x1,y1 specifies the lower-right corner of the PANE, again in VFX_WINDOW space.

Returns:
-1
No free entries available in PANE_LIST.

0 to n_entries -1
Index into PANE_LIST.

Remarks:
When the application writes to a given area of a VFX_WINDOW for which pane list management is used, the area's boundaries should be registered by means of a call to VFX_pane_list_add () or VFX_pane_list_add_area(). These two functions are identical in operation, except that a pointer to an existing PANE may be passed to VFX_pane_list_add(), while an explicit rectangular area and VFX_WINDOW pointer are expected by VFX_pane_list_add_area().

Both functions return an index value from 0 to n_entries-1, where n_entries is the number of PANE_LIST entries reserved by the VFX_pane_list_construct () function. This value may be maintained by the application for later use by the VFX_pane_list_delete_entry () function, described below, or it may be disregarded altogether. A returned value of -1 indicates that no free entries were available in the pane list.

The VFX_WINDOW associated with the area passed to this function is treated as a "staging window" for the physical display screen. The area boundaries passed to the function will be refreshed by VFX_pane_list_refresh () at the same physical screen coordinates.

Example:

__

C Prototype:
void VFX_pane_list_clear TC "VFX_pane_list_clear" \l "3"

 XE "VFX_pane_list_clear" (PANE_LIST *list)

Description:
The VFX_pane_list_clear() function initializes a pane list, removing all previously entered areas.

Parameters:
list is a pointer to a PANE_LIST structure previously constructed by VFX_pane_list_construct ().

Returns:
None.

Remarks:
Since the PANE_LIST structure maintains its own copies of all "dirty rectangles" added to the list, VFX_pane_list_clear() has no effect on any PANE structures which were passed to VFX_pane_list_add_area () .

Example:

VFX_pane_list_construct

C Prototype:
PANE_LIST *VFX_pane_list_construct TC "VFX_pane_list_construct" \l "3"

 XE "VFX_pane_list_construct" (S32 n_entries)

Description:
VFX_pane_list_construct() allocates, initializes, and returns a pointer to a structure of type PANE_LIST.

Parameters:
n_entries specifies the maximum number of areas to be maintained in the list.

Returns:
*PANE_LIST
A pointer to the constructed PANE.

NULL
If the structure allocation fails, VFX_pane_list_construct()

returns NULL.

Remarks:
This function uses the C runtime malloc ()function for memory management.

The PANE_LIST structure and its associated functions allow the application to keep track of portions of one or more windows which have been altered by the application, in order to minimize time spent refreshing unmodified portions of the display screen. Internally, the PANE_LIST functions use an array of PANE structures to maintain a list of altered areas of a VFX_WINDOW ("dirty rectangles" or "dirty panes"). When a PANE_LIST is created with VFX_pane_list_construct(), the application must pass the maximum number of areas to be maintained in the list in the n_entries parameter.

Example:

__

C Prototype:
void VFX_pane_list_delete_entry TC "VFX_pane_list_delete_entry" \l "3"

 XE "VFX_pane_list_delete_entry" (PANE_LIST *list, S32 entry_num)

Description:
This function allows the application to selectively remove an entry from PANE_LIST *list, without affecting any of the other areas in the pane list.

Parameters:
list is a pointer to a PANE_LIST structure previously constructed by VFX_pane_list_construct ()
entry_num specifies the entry's index in the pane list.

Returns:
None.

Remarks:
Since the PANE_LIST structure maintains its own copies of all "dirty rectangles" added to the list, VFX_pane_list_delete_entry() has no effect on any PANE structures which were passed to VFX_pane_list_add_area ().

Example:

VFX_pane_list_destroy

C Prototype:
void VFX_pane_list_destroy TC "VFX_pane_list_destroy" \l "3"

 XE "VFX_pane_list_destroy" (PANE_LIST* list)

Description:
VFX_pane_list_destroy() frees the memory associated with a PANE_LIST structure which was previously created by VFX_pane_list_construct ().

Parameters:
list specifies the PANE_LIST to be destroyed.

Returns:
None.

Remarks:
This function uses the C runtime free () function for memory management.

Example:

__

C Prototype:
void VFX_pane_list_refresh TC "VFX_pane_list_refresh" \l "3"

 XE "VFX_pane_list_refresh" (PANE_LIST *list)

Description:
The VFX_pane_list_refresh() function copies the contents of all panes in the PANE_LIST to their corresponding regions of the back buffer window.

Parameters:
list must point to a valid PANE_LIST structure.

Returns:
None.

VFX_pane_scroll

C Prototype:
S32 VFX_pane_scroll TC "VFX_pane_scroll" \l "3"

 XE "VFX_pane_scroll" (PANE *panep, S32 dx_, S32 dy_, S32 mode, S32 parm)

Description:
This function scrolls the contents of a pane without clipping.

Parameters:
panep specifies the pane to be modified.

dx_ specifies the horizontal scroll distance in pixels. Positive values of dx_ indicate rightward movement. Negative values of dx_ indicate leftward movement.

dy_ specifies the vertical scroll distance in pixels. Positive values of dy_ indicate downward movement. Negative values of dy_ indicate upward movement. In other words, the point (dx_,dy_) specifies the scroll destination of the pane's upper-leftmost pixel.

mode specifies the scroll mode (NORMAL or WRAP).

If mode is PS_NOWRAP (0), pixels which are vacated by the scroll operation are filled with the color specified by parm.

If mode is PS_NOWRAP and the horizontal (vertical) scroll distance exceeds the pane width (height), the whole pane will be filled with the color specified by parm. This applies to both positive and negative distances.

If mode is PS_WRAP (1), pixels which are scrolled off one side of the pane are wrapped around to the other side of the pane. Both vertical and horizontal wrapping can occur simultaneously. When mode is PS_WRAP, the caller must provide a temporary work buffer and set parm to its address.

If mode is PS_WRAP, modulo arithmetic is applied to the scroll distances so that a continuous wrap affect is implemented. For example, if the pane width (Xsize) is 20, these values of dx_ are treated equally: ... -57, -37, -17, 3, 23, 43, 63, ...

parm specifies the fill color (if mode is PS_NOWRAP), or the address of a caller-provided temporary buffer (if mode is WRAP).

If parm is NULL, VFX_pane_scroll () does not perform the specified scroll operation but instead returns the minimum buffer size required to perform the operation.

Returns:
 0
OK. Scroll operation was successful.

>0
Required buffer of size n. Returned when mode is PS_WRAP,

parm is NULL, and buffering is needed.

-1
Bad window. The height or width of the pane's window is less

than one.

-2
Bad pane. The height or width of the pane is less than one.

Remarks:
VFX_pane_scroll () uses VFX_pane_copy () to move and fill pixels.

A temporary buffer is needed only when scroll mode is PS_WRAP (1). The required buffer size depends on dx_ and dy_ as well as the width and height of the pane. The worst-case buffer size is (pane width * pane height). The best-case buffer size is 0, which occurs when no movement is required (i.e., (dx_ mod pane width) == (dy_ mod pane height) == 0).

VFX_pane_scroll() should not be used on a pane which has been clipped to a window. Once a pane is clipped, the clipped areas of are no longer available for scrolling . To scroll a clipped pane, you must draw the entire pane in an off-screen window, call VFX_pane_scroll(), then perform a VFX_pane_copy() to the on-screen pane.

Example:
VTEST.C and the following:

#define PS_NOWRAP 0

#define PS_WRAP 1

VFX_pane_scroll (&paneA, 0, -16, PS_NOWRAP, BACKGROUND_COLOR);

scrolls paneA 16 pixels upward, filling the vacated area at the bottom with the color BACKGROUND_COLOR.

VFX_pane_scroll (&paneB, 5, 0, PS_NOWRAP, CHARTREUSE);

scrolls paneB 5 pixels to the right, filling the vacated area at the left with the color CHARTREUSE.

VFX_pane_scroll (&paneC, -10, 20, PS_WRAP, (int) ScrollBuf);

scrolls paneC 10 pixels to the left and 20 pixels downward, wrapping instead of filling and using ScrollBuf for temporary storage.

size = VFX_pane_scroll (&paneD, 29, 76, PS_WRAP, NULL);

calculates and returns the buffer size which will be required to perform the specified scroll operation.

__

C Prototype:
S32 VFX_pane_wipe TC "VFX_pane_wipe" \l "3"

 XE "VFX_pane_wipe" (PANE *panep, U32 color)

Description:
This function wipes the specified pane with the specified color.

Parameters:
panep specifies the pane to be filled.

color specifies the color to fill the pane with.

Returns:
0
OK.

1
Bad window: The height or width of the window is less than one.

2
Bad pane: The height or width of the pane is less than one, or the

pane is completely off window (which is legal)

Example:
VTEST.C

VFX_PCX_draw

C Prototype:
void VFX_PCX_draw TC "VFX_PCX_draw" \l "3"

 XE "VFX_PCX_draw" (PANE *pane, U8 *PCX_buffer)

Description:
Draws a PCX-formatted image to the specified pane.

Parameters:
pane specifies the pane where the image will be drawn.

PCX_buffer is a pointer to a memory buffer containing a binary image of a 256-color .PCX file.

Returns:
None. The .PCX image format, unlike the .GIF and .LBM formats which are also supported by the VFX library, does not provide a standardized way to store the image's "background color."

Example:
SHOWPIC.C

__

C Prototype:
void VFX_PCX_palette TC "VFX_PCX_palette" \l "3"

 XE "VFX_PCX_palette" (U8 *PCX_buffer, S32 PCX_file_size, VFX_RGB *palette)

Description:
Returns palette information from a PCX file in an VFX_RGB array at *palette.

Parameters:
PCX_buffer is a pointer to a memory buffer containing a binary image of the .PCX file.

palette is a pointer to an array of 256 VFX_RGB color values.

Returns:
None.

Example:
SHOWPIC.C

__

C Prototype:
S32 VFX_PCX_resolution TC "VFX_PCX_resolution" \l "3"

 XE "VFX_PCX_resolution" (U8 *PCX_buffer)

Description:
Returns the x,y resolution (image size) of the PCX image in pixels.

Parameters:
PCX_buffer is a pointer to a memory buffer containing a binary image of the .PCX file.

Returns:
x resolution in the upper 16-bits of the 32-bit return value. Shift the return value right 16-bits to obtain the x resolution by itself.

y resolution in the lower 16-bits of the 32-bit return value. Bit-wise and the return value with 0x0ffff to obtain the y resolution by itself.

Example:
SHOWPIC.C

VFX_pixel_read

C Prototype:
S32 VFX_pixel_read TC "VFX_pixel_read" \l "3"

 XE "VFX_pixel_read" (PANE *panep, S32 x, S32 y)

Description:
This function reads a single pixel from the specified pane.

Parameters:
panep specifies the pane from which the pixel will be read.

x specifies the horizontal offset (in pixels) from the left side of the pane. The first column of pixels in a pane is at x=0.

y specifies the vertical offset (in pixels) from the top of the pane. The first row of pixels in a pane is at y=0.

Returns:
0..255
Pixel color value.

-1
Bad window. The height or width of the pane's window is less

than one.

-2
Bad pane. The height or width of the pane is less than one.

-3
Off pane. The specified pixel is off the pane.

Example:
VTEST.C

VFX_pixel_write

C Prototype:
S32 VFX_pixel_write TC "VFX_pixel_write" \l "3"

 XE "VFX_pixel_write" (PANE *panep, S32 x, S32 y, U8 color)

Description:
This function writes a single pixel in the specified pane.

Parameters:
panep specifies the pane in which the pixel will be written.

x specifies the horizontal offset (in pixels) from the left side of the pane. The first column of pixels in a pane is at x=0.

y specifies the vertical offset (in pixels) from the top of the pane. The first row of pixels in a pane is at y=0.

color specifies the color to write to the pixel.

Returns:
0..255
Pixel value prior to write.

-1
Bad window. The height or width of the pane's window is less

than one.

-2
Bad pane. The height or width of the pane is less than one.

-3
Off pane. The specified pixel is off the pane.

Example:
VTEST.C

__

C Prototype:
void VFX_point_transform TC "VFX_point_transform" \l "3"

 XE "VFX_point_transform" (VFX_POINT *in, VFX_POINT *out, VFX_POINT *origin, S32 rot, F16 x_scale, F16 y_scale)

Description:
Rotates a 2D point by a specified angle around another point. The rotated point may also be scaled in both x and y. The result of the rotation and scaling operation is placed in a caller-specified VFX_POINT structure.

Parameters:
*in Pointer to a two-dimensional point structure which describes the point to be rotated.

*out Pointer to a two-dimensional point structure where the rotated point description will be placed.

*origin Pointer to a two-dimensional point structure which describes the center of rotation.

rot Integer rotation angle about the point *origin. The angle is specified from 0 to 3599 tenths of a degree clockwise from 12:00. Angles outside this range are shifted by 3600 tenth-degrees until they fall within the 0-3599 range.

x_scale Fixed-point scaling factor for the x axis. Before rotation, the rotated point's x offset from the point *origin is multiplied by x_scale. A negative scaling factor will cause the point to be mirrored across the point *origin.

y_scale Fixed-point scaling factor for the y axis. Before rotation, the rotated point's y offset from the point *origin is multiplied by y_scale. A negative scaling factor will cause the point to be mirrored across the point *origin.

Returns:
Transformed 2D point in the out parameter.

Example:
VTEST.C

VFX_rectangle_hash

C Prototype:
S32 VFX_rectangle_hash TC "VFX_rectangle_hash" \l "3"

 XE "VFX_rectangle_hash" (PANE *pane, S32 x0, S32 y0, S32 x1, S32 y1, U32 color)

Description:
Writes the specified color to every other pixel in a rectangular area. Odd and even pixels are written on alternating lines, resulting in a checkerboard effect or "hash." All other pixels in the rectangle are left unchanged.

Parameters:
pane specifies the pane to which the image will be drawn.

x0,y0 specifies the upper-left corner (in pane-relative coordinates) of the rectangle.

x1,y1 specifies the lower-right corner (in pane-relative coordinates) of the rectangle.

color specifies the palette index of the color to be written to alternate pixels in the rectangle.

Returns:
 1
Bad window. The height or width of the pane's window is less

than one.

-2
Bad pane. The height or width of the pane is less than one.

-3
Off pane. The specified pixel is off the pane.

-4
Bad Rectangle. The height or width of the rectangle is less than

one.

Example:
VTEST.C

__

C Prototype:
S32 VFX_shape_bounds TC "VFX_shape_bounds" \l "3"

 XE "VFX_shape_bounds" (void *shape_table, S32 shape_number)

Description:
Returns the total width and height (in pixels, including any transparent areas) of the specified shape. This function is useful when a shape of unknown dimensions must be aligned to arbitrary boundaries.

Parameters:
shape_table is a pointer to a memory buffer containing a binary image of the .SHP file.

shape_number is the index number of the desired shape in the shape table.

Returns:
The shape width in the upper 16-bits of the 32-bit return value. Shift the return value right 16-bits to obtain the width by itself.

The shape height in the lower 16-bits of the 32-bit return value. Bit-wise and the return value with 0x0ffff to obtain the height by itself.

VFX_shape_colors

C Prototype:
S32 VFX_shape_colors TC "VFX_shape_colors" \l "3"

 XE "VFX_shape_colors" (void *shape_table, S32 shape_number, VFX_CRGB *colors)

Description:
Returns the RGB values of all colors used in the specified shape.

Parameters:
shape_table is a pointer to a memory buffer containing a binary image of the .SHP file.

shape_number is the index number of the desired shape in the shape table.

colors may either point to an array of VFX_CRGB values or it may be NULL.

If *colors is a valid pointer (!NULL) the color index and RGB information for each color used in the shape will be stored there.

If colors is NULL, then the RGB information will not be stored.

Returns:
The number of colors used in the shape.

Remarks:
This function differs from VFX_shape_palette () in that it only returns a list of the RGB values for colors used in the shape. VFX_shape_palette()updates a complete 256-color palette with colors used in the shape.

Typically, VFX_shape_colors()should be called once with colors = NULL to get the number of colors in the shape. Then the appropriate amount of memory can be allocated before calling VFX_shape_colors() with colors = pointer to memory block.

Example:
GETSHAPE.C

__

C Prototype:
S32 VFX_shape_count TC "VFX_shape_count" \l "3"

 XE "VFX_shape_count" (void *shape_table)

Description:
Returns number of shapes present in the specified shape table.

Parameters:
shape_table is a pointer to a memory buffer containing a binary image of the .SHP file.

Returns:
Number of shapes in shape_table.

Example:
SHOWPIC.C

VFX_shape_draw

C Prototype:
S32 VFX_shape_draw TC "VFX_shape_draw" \l "3"

 XE "VFX_shape_draw" (PANE *panep, void *shape_table, S32 shape_number, S32 hotX, S32 hotY)

Description:
This function clips and draws a shape to a pane.

Parameters:
panep specifies the pane.

shape_table is a pointer to a memory buffer containing a binary image of the .SHP file.

shape_number is the index number of the desired shape in the shape table.

hotX, hotY specify the location where the shape will be drawn. The shape's hot spot will be placed at the specified location.

Returns:
 0
OK.

-1
Bad window.

-2
Bad pane.

-3
Shape off pane.

-4
Null shape.

Remarks:
See the 'VFX Shape File Format' section for more information.

__

C Prototype:
S32 VFX_shape_list TC "VFX_shape_list" \l "3"

 XE "VFX_shape_list" (void *shape_table, U32 *index_list)

Description:
Returns a list of indices which represent each unique shape in the specified VFX shape table.

Parameters:
shape_table is a pointer to a memory buffer containing a binary image of the .SHP file.

index_list may either point to an array of U32 values or it may be NULL.

If *index_list is a valid pointer (!NULL) the shape index number of each unique shape in the table will be stored there.

If index_list is NULL, then the shape indices will not be stored.

Returns:
The number of unique shapes present in the shape table.

Remarks:
With VFX release 1.13, GETSHAPE is capable of storing multiple references in a VFX shape file which point to the same shape information. VFX_shape_list() provides a method of determining the unique shapes stored in a VFX shape file.

Example:
None.

VFX_shape_lookaside

C Prototype:
void VFX_shape_lookaside TC "VFX_shape_lookaside" \l "3"

 XE "VFX_shape_lookaside" (U8 *table)

Description:
Registers a color translation lookaside table for use by future calls to VFX_shape_translate_draw ().

Parameters:
table points to a 256-byte array of translated color values for each of 256 possible VGA palette indices.

Remarks:
This function is necessary only when future calls will be made to VFX_shape_translate_draw(). See the VFX_shape_translate_draw() description for more details.

For performance reasons, the table passed to this function is copied to an internal 256-byte array within the VFX API module. This internal table will remain valid until the next call to VFX_shape_lookaside(), so there is no need to call this function repeatedly unless the lookaside table must be modified. The caller's original table array need not be maintained after this call is made.

Returns:
None.

__

C Prototype:
S32 VFX_shape_minxy TC "VFX_shape_minxy" \l "3"

 XE "VFX_shape_minxy" (void *shape_table, S32 shape_number)

Description:
Returns minimum x and y coordinates (in pixels) used in the specified shape. This function is useful when a shape of unknown dimensions must be drawn with its visible portion aligned to specified boundaries. The minimum x and y coordinates of a shape represent the effective offset of the shape's "hot spot" from its upper-left corner.

Parameters:
shape_table is a pointer to a memory buffer containing a binary image of the .SHP file.

shape_number is the index number of the desired shape in the shape table.

Returns:
The minimum x coordinate in the upper 16-bits of the 32-bit return value. Shift the return value right 16-bits to obtain the minimum x coordinate by itself.

The minimum y coordinate in the lower 16-bits of the 32-bit return value. Bit-wise and the return value with 0x0ffff to obtain the minimum y coordinate by itself.

Example:
SHOWPIC.C

VFX_shape_origin

C Prototype:
S32 VFX_shape_origin TC "VFX_shape_origin" \l "3"

 XE "VFX_shape_origin" (void *shape_table, S32 shape_number)

Description:
Returns the x and y offsets (in pixels) of a shape's origin, or "hot spot," from the upper left corner (0,0) of the shape, including any transparent areas. This function is useful when a shape of unknown dimensions and transparent boundaries must be drawn with its visible portion aligned to arbitrary boundaries.

Parameters:
shape_table is a pointer to a memory buffer containing a binary image of the .SHP file.

shape_number is the index of the desired shape in the shape table.

Returns:
The hotspot x coordinate in the upper 16-bits of the 32-bit return value. Shift the return value right 16-bits to obtain the width by itself.

The hotspot y coordinate in the lower 16-bits of the 32-bit return value. Bit-wise and the return value with 0x0ffff to obtain the height by itself.

Example:
None.

__

C Prototype:
void VFX_shape_palette TC "VFX_shape_palette" \l "3"

 XE "VFX_shape_palette" (void *shape_table, S32 shape_number, VFX_RGB *palette)

Description:
Returns palette information, if available, for a shape in a VFX_RGB array. If color information was not stored at the time the shape was compiled with GETSHAPE, the function will have no effect.

Parameters:
shape_table is a pointer to a memory buffer containing a binary image of the .SHP file.

shape_number The shape_number is the index number of the desired shape in the shape table.

palette is a pointer to an array of 256 VFX_RGB values. Only those palette entries corresponding to colors actually present in the shape definition will be updated by this function; the remaining entries will be left untouched.

Returns:
None.

Example:
SHOWPIC.C

VFX_shape_palette_list

C Prototype:
S32 VFX_shape_palette_list TC "VFX_shape_palette_list" \l "3"

 XE "VFX_shape_palette_list" (void *shape_table, U32 *index_list)

Description:
Returns a list of shape numbers which represent all shapes with unique palettes.

Parameters:
shape_table is a pointer to a memory buffer containing a binary image of the .SHP file.

index_list may either point to an array of U32 values or it may be NULL.

If *index_list is a valid pointer (!NULL) the shape index number of each shape with a unique palette will be stored there.

If index_list is NULL, then the shape indices will not be stored.

Returns:
The number of unique palettes present in the shape table.

Remarks:
Beginning with VFX release 1.13, GETSHAPE is capable of storing multiple references in a VFX shape file which point to the a given shape or palette, rather than duplicating bitmap images or palette data blocks for multiple instances of the same data. VFX_shape_palette_list() allows the application to determine which shapes have unique color information.

Example:
None.

__

C Prototype:
void VFX_shape_remap_colors TC "VFX_shape_remap_colors" \l "3"

 XE "VFX_shape_remap_colors" (void *shape_table, S32 shape_number)

Description:
Translates the pixel colors stored in the specified shape, using the lookaside table registered previously with VFX_shape_lookaside ().

Parameters:
shape_table is a pointer to a memory buffer containing a binary image of the .SHP file.

shape_number is the index number of the desired shape in the shape table.

Returns:
None.

Example:
None.

VFX_shape_resolution

C Prototype:
long VFX_shape_resolution TC "VFX_shape_resolution" \l "3"

 XE "VFX_shape_resolution" (void *shape_table, S32 shape_number)

Description:
Returns the x,y resolution (image size) of the shape in pixels.

Parameters:
shape_table is a pointer to a memory buffer containing a binary image of the .SHP file.

shape_number is the index number of the desired shape in the shape table.

Returns:
x resolution in the upper 16-bits of the 32-bit return value. Shift the return value right 16-bits to obtain the x resolution by itself.

y resolution in the lower 16-bits of the 32-bit return value. Bit-wise AND the return value with 0x0ffff to obtain the y resolution by itself.

Example:
SHOWPIC.C

__

C Prototype:
S32 VFX_shape_scan TC "VFX_shape_scan" \l "3"

 XE "VFX_shape_scan" (PANE *panep, U8 transparentColor, S32 hotX, S32 hotY, void *buffer)

Description:
This function converts a raster image into a standard VFX shape.

Parameters:
panep specifies the region containing the shape.

transparentColor specifies the transparent color, i.e.: the background color. This parameter should equal -1 if the shape has no transparent regions.

hotX, hotY specify the location of the shape's "hot spot".

buffer specifies the user-provided shape buffer into which the shape will be stored; or, if the parameter is NULL, it indicates that VFX_shape_scan () should calculate the required size of the buffer, rather than converting the image to a shape.

Returns:
>0
The length of the shape in bytes.

-1
Bad window

-2
Bad pane

Remarks:
The function will return the smallest rectangle capable of enclosing the visible portion of the shape.

Because VFX shapes are inherently 8-bit-per-pixel objects, this function is not supported by the 16-bpp WinVFX library.

See the 'VFX Shape File Format' section for more information.

Example:
VTEST.C

VFX_shape_resolution

C Prototype:
S32 VFX_shape_resolution TC "VFX_shape_set_colors" \f C \l "3"

 XE "VFX_shape_set_colors" (void *shape_table, S32 shape_number, VFX_CRGB *colors)

Description:
Replaces the RGB values of all colors used in the specified shape.

Parameters:
shape_table is a pointer to a memory buffer containing a binary image of the .SHP file.

shape_number is the index number of the desired shape in the shape table.

colors may either point to an array of VFX_CRGB values or it may be NULL.

If *colors is a valid pointer (!NULL) the color index and RGB information stored there will be used to replace the color information stored in the shape table for the specified shape.

If colors is NULL, then the RGB information will not be stored.

Returns:
The number of colors used in the shape.

Remarks:
Typically, VFX_shape_colors () should be called to load the colors from a particular shape. Those colors are then modified by the calling program. Once changes are complete, VFX_shape_set_colors() may be called to store the updated color information in the shape table.

Example:
GETSHAPE.C

VFX_shape_transform

C Prototype:
void VFX_shape_transform TC "VFX_shape_transform" \l "3"

 XE "VFX_shape_transform" (PANE *pane, void *shape_table, S32 shape_number, S32 hotX, S32 hotY, void *buffer, S32 rot, S32 x_scale, S32 y_scale, S32 flags)

Description:
Draws a standard VFX shape to an intermediate buffer with optional color translation, and then copies the intermediate buffer to the specified pane with optional 2D scaling, reflection, and rotation.

Parameters:
pane specifies the destination pane.

shape_table is a pointer to a memory buffer containing a binary image of the .SHP file.

shape_number is the index number of the desired shape in the shape table.

hotX, hotY specify the location where the shape will be drawn. The shape's hot spot will be placed at the specified location. All scaling, rotation, and mirroring will take place with reference to this point.

buffer must point to a block of memory which is at least large enough to contain a bitmapped image of the specified VFX shape, rendered at normal size and zero rotation. In the case of 256-color shapes, the size of the buffer should be at least equal in bytes to the shape's width in pixels times its height in pixels. Internally, this memory will be used as an intermediate window buffer.

rot gives the desired rotation factor in tenths of a degree, from 0 to 3,599. Rotation takes place in a clockwise direction from 12:00. Rotation factors outside the 3600 tenth-degree range will be normalized by adding or subtracting increments of 3600 tenth-degrees.

x_scale gives the desired scaling factor for the shape's X axis, in 16.16 fixed-point notation. 1:1 scaling in X would correspond to an x_scale factor of 0x10000, while 0.5:1 scaling would result from an x_scale of 0x8000. Similarly, 2:1 scaling would be specified by an x_scale of 0x20000. Negative values result in reflection across the origin; e.g., 0xfffe0000 would yield 2:1 scaling and "flipping" in X.

y_scale gives the desired scaling factor for the shape's Y axis, in 16.16 fixed-point notation. It is otherwise identical to x_scale.

flags has two valid bitfields, which may be used together or independently of each other.

ST_XLAT affects the nature of the first pass which renders the shape to the intermediate buffer. If specified, the shape is rendered to the intermediate buffer using the color lookaside table last registered with the VFX_shape_lookaside () function. See VFX_shape_lookaside() and VFX_shape_translate_draw () for further details.

ST_REUSE causes the entire buffer-rendering first pass to be skipped, resulting in much greater performance in cases where the source shape data and buffer contents remain valid from one call to the next.

Remarks:
Scaling and mirroring calculations, if any, are performed prior to rotation.

For the very highest performance, the ST_REUSE flag should be employed whenever possible. In effect, ST_REUSE converts the algorithm from a two-pass transformation into a simple (and much faster) one-pass affine "warp." You may wish to maintain a collection of buffers, each containing the shapes to be transformed, pre-rendered against a transparent (color RGB_TRANSPARENT or PAL_TRANSPARENT) background. This can be done manually by using your buffer as a window buffer, clearing it to the applicable transparent color, and filling it with the desired bitmap. Perhaps the simplest alternative, however, is to use ST_REUSE on all calls for a given shape except the very first, and keep track of which buffer contains each shape.

Internally, color 255 is assumed to be "transparent" for the WinVFX8 library, while color 0xFFFE is assumed to be transparent by the relevant primitives in the WinVFX16 library. These values are equated in VFX.H to PAL_TRANSPARENT and RGB_TRANSPARENT, respectively. The function begins its first pass by clearing the buffer to the transparent color key, then drawing the specified shape against this background. Therefore, if the shape has any transparent areas at all, they will appear in the resulting intermediate image as the transparent color key. This implies that the reserved color key value, even if it occurs within the original shape as a non-transparent color, will be treated as transparent during the function's second (inverse transformation) pass.

Remarks:
If x_scale and y_scale are both 0x10000 (1:1 scaling in both X and Y) and rot is 0 (no rotation), the function will immediately pass control to VFX_shape_draw () or VFX_shape_translate_draw(), providing optimum performance by omitting the unnecessary second pass.

Scaling, rotation, and mirroring are simple examples of affine transformations, or two-dimensional image warps that preserve straight lines while altering angles and distances between points. More general affine transformations may be applied to the contents of a window by use of the texture-mapping function VFX_map_polygon (), described elsewhere in this manual.

Returns:
None.

VFX_shape_translate_draw

C Prototype:
S32 VFX_shape_translate_draw TC "VFX_shape_translate_draw" \l "3"

 XE "VFX_shape_translate_draw" (PANE *pane, void *shape_table, S32 shape_number, S32 hotX, S32 hotY)

Description:
This function clips and draws a shape to a pane, translating each pixel color through the 256-byte array registered via a previous call to VFX_shape_lookaside ().

Parameters:
panep specifies the pane.

shape_table is a pointer to a memory buffer containing a binary image of the .SHP file.

shape_number is the index number of the desired shape in the shape table.

hotX, hotY parameters specify the location where the shape will be drawn. The shape's hot spot will be placed at the specified location.

Returns:
 0
OK.

-1
Bad window.

-2
Bad pane.

-3
Shape off pane.

-4
Null shape.

Remarks:
See the 'VFX Shape File Format' section for more information.

This function is identical to VFX_shape_draw () except that it performs "on-the-fly" color translation at a typical 10-20% performance penalty.

Example:
VTEST.C

VFX_shape_visible_rectangle

C Prototype:
void VFX_shape_visible_rectangle TC "VFX_shape_visible_rectangle" \l "3"

 XE "VFX_shape_visible_rectangle" (void *shape_table, S32 shape_number, S32 hotX, S32 hotY, S32 mirror, S32 *rectangle)

Description:
This function "traces" a shape, returning the smallest rectangle capable of enclosing the visible (non-transparent) portion of the shape.

Parameters:
shape_table is a pointer to a memory buffer containing a binary image of the .SHP file.

shape_number is the index of the desired shape in the shape table.
hotX, hotY specify the location where the shape would be drawn. The shape's hot spot is assumed to be at the specified location.

mirror flag determines if the shape will be flipped along the X axis, Y axis or both.

Bit 0: VR_X_MIRROR When this flag is set, the shape will be mirrored across the X axis at the hot spot.

Bit 1: VR_Y_MIRROR When this flag is set, the shape will be mirrored across the Y axis at the hot spot.

The VR_XY_MIRROR equate sets both bits above.

rectangle must point to an array of four doublewords which will receive the coordinates of the visible rectangle boundaries.

Returns:
 The coordinates of the bounding rectangle in the array designated by the rectangle parameter.

VFX_string_draw

C Prototype:
void VFX_string_draw TC "VFX_string_draw" \l "3"

 XE "VFX_string_draw" (PANE *pane, S32 x, S32 y, VFX_FONT *font, char *string, void *color_translate)

Description:
Draws a string of characters from a font at x,y in the specified pane without line wrap.

Parameters:
pane specifies the pane where the string will be drawn.

x and y specify the coordinate for the upper left corner of the character string.

font is a pointer to a memory buffer holding a binary image of the font file.

string points to the string of characters to be displayed.

color_translate If color_translate is NULL, the characters' pixels are copied with no color translation or transparency. If color_translate points to a table, pixels with a color value of 255 are skipped, resulting in transparency.

In the 15/16bpp versions of WinVFX, color_translate must not be NULL. Instead, an array of 256 16-bit WORDs must be provided to translate the font colors to native RGB values for the display mode in use. An example of how to construct a typical high-color font translation table appears below.

for (i=0; i < 256; i++) font_CLUT[i] = 0;

font_CLUT[SYSFONT_TEXTCOLOR] = (U16) RGB_NATIVE(255,255,255);

font_CLUT[SYSFONT_BKGNDCOLOR] = (U16) RGB_TRANSPARENT;

Because the font lookup table in 15/16bpp modes uses native RGB color values, the application must be prepared to rebuild it when changing video modes.

Returns:
None.

Example:
VTEST.C

VFX_translate_polygon

C Prototype:
void VFX_translate_polygon TC "VFX_translate_polygon" \l "3"

 XE "VFX_translate_polygon" (PANE *pane, S32 vcnt, VERTEX2D *vlist, void *lookaside)

Description:
Modifies each pixel within a vcnt-sided convex polygon described by the points in vlist, by translating each pixel value within the polygon through a caller-specified *lookaside table. This function is useful for implementing effects involving optical translucency, such as tinted glass windows and translucent dialog boxes.

Parameters:
pane specifies the pane containing the polygon to be modified.

vcnt specifies the number of vertices in the polygon and in vlist.

vlist is a pointer to a list of VERTEX2D structured points. These points describe the location of each corner of the polygon, as well as the color value to be interpolated and added to the points at each vertex and within the polygon.

The points in vlist must be ordered in either clockwise or counter-clockwise sequence around the polygon. For example: Consider a four cornered polygon with vertices are numbered clockwise 1,2,3, and 4. There are four clockwise and four counter-clockwise sequences for correctly listing these vertices in vlist.

Clockwise:

{1,2,3,4}, {2,3,4,1}, {3,4,1,2}, {4,1,2,3}

Counter-Clockwise:

{4,3,2,1}, {3,2,1,4}, {2,1,4,3}, {1,4,3,2}

Any other order of points in vlist will cause the polygon to be drawn improperly.

lookaside refers to a 256-byte array of color index values intended to replace any of the 256 possible existing color values at each point within the specified polygon.

Returns:
None.

Remarks:
This function will handle convex and horizontally concave polygons only. Polygons which can be intersected by a horizontal line through more than two edges cannot be rendered by this function.

__

C Prototype:
VFX_WINDOW *VFX_window_construct TC "VFX_window_construct" \l "3"

 XE "VFX_window_construct" (S32 width, S32 height)

Description:
The VFX_window_construct() function allocates and returns a pointer to a VFX_WINDOW structure. The VFX_WINDOW structure's x_max and y_max members are set to width-1 and height-1, respectively, and a buffer of width * height bytes is allocated for the window's image data.

Parameters:
width specifies width (in pixels) of the new VFX_WINDOW. The VFX_WINDOW structure's x_max member is set to width-1.

height specifies height (in pixels) of the new VFX_WINDOW. The VFX_WINDOW structure's y_max member is set to height-1.

Returns:
*VFX_WINDOW
A pointer to the new VFX_WINDOW.

NULL
If the structure allocation fails, VFX_window_construct() returns NULL.

Remarks:
This function uses the C runtime malloc () function for memory management.

Example:

VFX_window_destroy

C Prototype:
void VFX_window_destroy TC "VFX_window_destroy" \l "3"

 XE "VFX_window_destroy" (VFX_WINDOW*window)

Description:
VFX_window_destroy() frees the memory associated with a VFX_WINDOW structure which was previously created by VFX_window_construct ().

Parameters:
window specifies the VFX_WINDOW to be destroyed.

Returns:
None.

Remarks:
This function uses the C runtime free () function for memory management.

Example:

struct _window

C Structure:
typedef struct _window
{

 void *buffer;
// Pointer to window buffer

 S32 x_max;
// Maximum X-coordinate in window [0,x_max)

 S32 y_max;
// Maximum Y-coordinate in window [0,y_max)

 S32 pixel_pitch;
// # of bytes between adjacent pixels

 S32 bytes_per_pixel;
// # of bytes to write per pixel

 //

 // RGB shift/mask values for mode active when window was created

 //

 S32 R_left;
// # of bits left to shift component

 S32 R_right;
// # of bits right to shift 8-bit component

 U32 R_mask;
// Component mask

 S32 R_width;
// # of bits in component

 S32 G_left;

 S32 G_right;

 U32 G_mask;

 S32 G_width;

 S32 B_left;

 S32 B_right;

 U32 B_mask;

 S32 B_width;

 S32 flags;

}

VFX_WINDOW;

Elements:
buffer specifies a pointer to a memory buffer for screen data. The size of the memory buffer will depend upon the size of the window (in pixels) and the value in bytes_per_pixel.

The size of the memory buffer should equal the number of pixels in the window multiplied by the number of bytes required to represent each pixel. In 256-color modes, one byte is required for each pixel. Therefore, the size of the memory buffer is simply the number of pixels in the window. Example:

buffer_size = (y1+1) * (x1+1) * bytes_per_pixel;

x_max, y_max define the lower right corner of the VFX_WINDOW in an arbitrary coordinate system. These coordinates are used by VFX to calculate the width and height of the VFX_WINDOW. Ordinarily, these values will be one less than the width and height of the window in pixels.

pixel_pitch, bytes_per_pixel define the number of actual and displayed bytes per visible pixel, respectively, for the current display mode. Under all current versions of WinVFX, both pixel_pitch and bytes_per_pixel wll be equal to 2 for 15/16bpp modes and 1 for 8bpp modes.

R/G/B_left/right/mask/width define the native pixel format for the display mode which was active when the window was either constructed with VFX_window_construct (), or assigned a buffer with

VFX_assign_window_buffer (). They define the shift counts for converting an 8-bit component into the component’s native format (_left, _right), the component bitmask for each component (_mask), and the number of bits assigned to each component (_width). These values are undefined and meaningless for 8bpp modes.

flags Reserved for internal use by WinVFX.

Remarks:
VFX functions clip to PANE boundaries, which in turn are clipped to their associated VFX_WINDOW boundaries. This means VFX functions can write only to screen areas which are within both a PANE and its associated VFX_WINDOW.

SAL Application Program Interface Reference TC "SAL Application Program Interface Reference" \l "1"

 XE "SAL Application Program Interface Reference"
SAL API Overview TC "SAL API Overview" \f C \l "2"

 XE "SAL API Overview"
The Win32 System Abstraction Layer (SAL) encapsulates almost all of the Windows-specific display code needed by a typical Windows 95-compatible game.

The SAL library, W32SAL.DLL, may be used as either a companion to the WinVFX primitive libraries, or as a standalone module independent of WinVFX. As the WinVFX-based example program DEMO.CPP illustrates, SAL is capable of handling most or all of an application's interaction with the Win32 API. These include registering a window class, creating a window, and processing Windows messages on the application's behalf, as well as providing an easy-to-use abstraction layer for display interfaces such as DirectDraw and CreateDIBSection(). SAL also provides default processing for input focus management, window minimization/maximization, and fullscreen/window-mode presentation.

SAL Application Startup and Shutdown
Most SAL applications can be designed around the "boilerplate" startup and shutdown code below. The WinMain() function begins by passing the application's instance handle and name to SAL_startup(), disallowing multiple instances (FALSE) and specifying the address of an exit handler to be called automatically by SAL when the WM_QUIT message is received.

A successful result is followed by a call to SAL_create_main_window(), which causes SAL to register a default window class and create the application's main window. (An alternate version of this function, SAL_create_main_window_with_WNDCLASS(), allows the application to create its own window class if necessary).

The application may optionally register its own window procedure with SAL_register_WNDPROC(). Any window procedure registered with this function will be called by SAL's own internal window procedure in lieu of DefWindowProc(), so the application handler is responsible for calling DefWindowProc() on SAL's behalf where appropriate to do so.

The application should also register its own exit handler which will shut down SAL and any other resources in the event of an exit condition which is not initiated by the user thus not handled by the WM_QUIT exit function passed to SAL_startup(). Both the AppExit() and WinExit() handlers in the example code below call WinClean(), which, after eliminating the possibility of multiple calls, calls SAL_shutdown() to allow SAL to clean up its own resources.

Finally, the initialization code in WinMain() calls SAL_set_display_mode() to initialize DirectDraw fullscreen mode at 640x480 at 15 or 16 bits per pixel. At this point, the application is now a full-fledged DirectDraw client, with linear-frame-buffer access and a variety of other options accessible through the SAL API. The allow_mode_switch parameter in SAL_set_display_mode() is set to TRUE to allow the user to switch between fullscreen and windowed mode with the standard Windows ALT-ENTER key combination. By default (unless the SAL_USE_DDRAW_IN_WINDOW preference is set to TRUE) this implies that the application can switch between two completely different Windows display subsystems on the fly -- DirectDraw and CreateDIBSection() -- all with little or no special effort on the application programmer's part.

 //**

 //

 // Application's WinMain() function

 //

 //**

 int PASCAL WinMain(HINSTANCE hInstance, //)

 HINSTANCE hPrevInstance,

 LPSTR lpCmdLine,

 int nCmdShow)

 {

 //

 // Initialize system abstraction layer -- must succeed in order to continue

 //

 if (!SAL_startup(hInstance,

 "SAL Test Application",

 FALSE,

 WinExit))

 {

 return 0;

 }

 //

 // Create application window

 //

 hWnd = SAL_create_main_window();

 if (hWnd == NULL)

 {

 SAL_shutdown();

 return 0;

 }

 //

 // Register optional application window procedure

 //

 SAL_register_WNDPROC(MyWindowProc);

 //

 // Register exit handler

 //

 atexit(AppExit);

 //

 // Set desired display mode (e.g., 640x480 high-color)

 //

 // VFX applications should use VFX_set_display_mode()

 // instead of SAL_set_display_mode()

 //

 if (!SAL_set_display_mode(640,

 480,

 16,

 SAL_FULLSCREEN_MODE,

 TRUE))

 {

 exit(1);

 }

 //

 // ... (Remainder of application startup code here)

 //

 //**

 //

 // Exit handlers must be present in every SAL application

 //

 // These routines handle exits under different conditions (exit() call,

 // user request via GUI, etc.)

 //

 //**

 static int exit_handler_active = 0;

 void WINAPI WinClean(void)

 {

 if (exit_handler_active)

 {

 return;

 }

 exit_handler_active = 1;

 SAL_shutdown();

 }

 void WINAPI WinExit(void)

 {

 WinClean();

 exit(0);

 }

 void AppExit(void)

 {

 WinClean();

 return;

 }

While every effort has been made to establish SAL as the easiest, quickest available route to developing games and custom graphics applications for Win32, a number of more specialized requirements have been anticipated and addressed as well. SAL provides over three dozen API functions and several "preference" settings to allow developers to exercise control over as many aspects of SAL's interaction with Windows as possible. The next section, "SAL API Data Structures and Functions," outlines these features in detail.

SAL API Data Structures and Functions

SAL_RGB

Structure:
typedef struct

 {

 U8 r;

 U8 g;

 U8 b;

 }

 SAL_RGB TC "SAL_RGB" \l "3"

 XE "SAL_RGB" ;

Elements: r, g, and b specify 8-bit red, green, and blue color components, respectively

Remarks: SAL_RGB is identical in layout to VFX_RGB, and may be typecast accordingly.

__

Structure:
typedef struct

 {

 S32 x;

 S32 y;

 S32 w;

 S32 h;

 }

 SAL_WINAREA TC "SAL_WINAREA" \l "3"

 XE "SAL_WINAREA" ;

Elements:
x,y indicate the upper-leftmost corner of the described region

w,h indicate the region's width and height, respectively

Remarks:

__

Structure:
typedef struct tagSAL_DDRAWINFO

{

struct IDirectDraw2 * lpDD;

struct IDirectDrawSurface3 * lpDDSPrimary;

struct IDirectDrawSurface3 * lpDDSBack;

struct IDirectDrawPalette * lpDDPal;

struct IDirectDrawClipper * lpDDClipper;

}

SAL_DDRAWINFO TC "SAL_DDRAWINFO" \l "3"

 XE "SAL_DDRAWINFO" ;

Elements:
lpDD represents the DirectDraw provider in use.

lpDDSPrimary represents the primary (front-buffer) DirectDraw surface in use.

lpDDSBack represents the back-buffer DirectDraw surface in use.

lpDDPal represents the current DirectDraw palette object in use, if any.

lpDDClipper represents the current DirectDraw clipper object in use, if any.

Remarks:
The current DirectDraw object information can be obtained by the application with a call to SAL_get_DDRAW_info (). Most applications should not need to inspect or use the DirectDraw objects created by SAL.

SAL_debug_printf

C Prototype:
void __cdecl SAL_debug_printf TC "SAL_debug_printf" \l "3"

 XE "SAL_debug_printf" (char *fmt, ...)

Description:
Sends a formatted string to the Windows OutputDebugString() function.

Parameters:
(Refer to the standard C printf() function)

Returns:

Remarks:
This function serves as a diagnostic/debugging aid when executed on systems with TTL monochrome monitors or IDEs that provide Windows debug trace information.

__

C Prototype:
S32 SAL_get_preference TC "SAL_get_preference" \l "3"

 XE "SAL_get_preference" (U32 number)

Description:
Retrieves the current value for an operational preference setting.

Parameters:
number specifies the desired preference to obtain.

Returns:
The current value of the specified SAL preference.

Remarks:
See SAL_set_preference () for a list of preferences and their effects and default values.

SAL_set_preference

C Prototype:
S32 SAL_set_preference TC "SAL_set_preference" \l "3"

 XE "SAL_set_preference" (U32 number, S32 value)

Description:
Allows the application to override SAL's default behavior in several aspects of operation.

Parameters:
number specifies the desired preference to change.value specifies the new preference value to set.

Returns:
The previous value for the specified preference.

Remarks:
SAL_set_preference() may be called only after calling SAL_startup (). Changes to preference settings take effect only when the affected operations are next invoked by the application.

Supported SAL preferences, along with their default values, include:

SAL_ALLOW_FRONT_LOCK

 (default = NO)
Some DirectDraw-compatible display cards do not allow the front (visible) buffer to be locked for writing. By default the SAL_lock_surface () function will lock the back buffer instead if a SAL_FRONT_SURFACE lock is requested. Setting this preference to YES will allow future calls to SAL_lock_surface() to attempt to lock the front surface buffer. However, in such a case there is no reliable way for the application (or SAL) to determine if the DirectDraw lock attempt succeeded. This preference was included to work around bugs in some early DirectDraw drivers, and may no longer be needed on current hardware.

SAL_BUFFER_IF_NO_LFB

(default = YES)

This preference setting is unimplemented in current versions of SAL, and reserved for future use.

SAL_MAX_VIDEO_PAGES

(default = 3)

Determines the maximum number of display pages, including the front (visible) buffer page, which will be allocated by SAL when initializing a DirectDraw video mode with the SAL_set_display_mode () function. The actual number of allocated pages may be smaller than the requested page count, and may be obtained from the SAL_display_page_count () function.

SAL_ALLOW_WINDOW_RESIZE
(default = YES)

The default application window size, when setting a window-based display mode with SAL_set_display_mode(), is adjusted by default to make the window client area exactly the same size as the X/Y resolution requested by the application. This is necessary for maximum display performance across the widest-possible range of consumer hardware. To ensure that maximum performance is obtained at all times, the application may wish to prevent the user from manually resizing the application window by dragging its edges. This can be done by setting the SAL_ALLOW_WINDOW_RESIZE preference to FALSE at any time prior to calling SAL_set_display_mode().

SAL_PREVENT_ALT_MENU_POPUP
(default = YES)

The default behavior for a Windows application is to respond to the ALT key by setting the input focus to its context menu (the icon in the upper-left corner of the caption bar). This behavior is normally undesirable for games and other interactive applications, especially when running in fullscreen mode when the caption bar and context menu is invisible to the user. Consequently, it is disabled by default by SAL. The application may control SAL's response to the ALT key by setting this preference at any time.

SAL_ALWAYS_ON_TOP

(default = NO)

If this preference is set to YES, SAL will attempt to ensure that the application menu is always at the top of the visible window Z-order on the desktop. Changes to this preference take effect at the next call to SAL_set_display_mode().

SAL_MAXIMIZE_TO_FULLSCREEN
(default = YES)

This preference governs the behavior of the "maximize" button on the application window's caption bar. By default, clicking on the maximize button of a SAL application running in windowed mode will cause the application to switch to DirectDraw fullscreen mode, assuming the allow_mode_switch parameter passed to the last SAL_set_display_mode () call was TRUE. Otherwise, the maximize button will simply expand the window to a fullscreen window (after the default Windows behavior), without changing the display mode.

SAL_USE_DDRAW_IN_WINDOW
(default = NO)

By default, SAL uses CreateDIBSection() in windowed mode, for the benefit of users without DirectDraw support. An application running in high-color (15/16bpp) mode may elect to set this preference to TRUE before calling SAL_set_display_mode() to use DirectDraw in windowed mode instead. There is normally no reason to do this unless Direct3D support in windowed mode is desired.

SAL_USE_PAGE_FLIPPING

(default = YES)

If this preference is set to NO, subsequent calls to SAL_flip_surface () or SAL_unlock_surface () with the perform_flip option set to TRUE will refresh the screen with a Blt ()-style operation rather than a page flip. This preference has no effect in windowed mode.

Most applications should work properly without altering any of the default SAL preference values.

SAL_set_palette_entry

C Prototype:
void SAL_set_palette_entry TC "SAL_set_palette_entry" \l "3"

 XE "SAL_set_palette_entry" (S32 index, SAL_RGB *entry, S32 wait_flag)

Description:
Sets a specified RGB palette entry value.

Parameters:
index specifies the palette entry to set, from 0 to 255.

*entry specifies the location of a SAL_RGB structure which contains the desired palette register value.

wait_flag is reserved for future use, and should be 0 in all current versions of SAL.

Remarks:
This function has no effect when SAL is running in a high-color (15/16bpp) display mode. WinVFX applications should use the VFX_set_palette_entry () / VFX_get_palette_entry () functions instead of calling SAL directly.

__

C Prototype:
void SAL_get_palette_entry TC "SAL_get_palette_entry" \l "3"

 XE "SAL_get_palette_entry" (S32 index, SAL_RGB *entry)

Description:
Retrieves an RGB color value corresponding to a given 256-color palette index.

Parameters:
index specifies the palette entry to obtain, from 0 to 255.

*entry specifies the location of a SAL_RGB structure which will receive the current palette register's contents.

Remarks:
this function has no effect when SAL is running in a high-color (15/16bpp) display mode. WinVFX applications should use the VFX_set_palette_entry () / VFX_get_palette_entry () functions instead of calling SAL directly.

__

C Prototype:
void SAL_set_palette_range TC "SAL_set_palette_range" \l "3"

 XE "SAL_set_palette_range" (S32 index, S32 num_entries, SAL_RGB *entry_list, S32 wait_flag)

Description:
Associates an array of RGB color values with a corresponding range of 256-color palette entries.

Parameters:
index specifies the first palette entry to set, from 0 to 255.

num_entries specifies the number of palette entries to set.

*entry_list specifies the location of an array of num_entries SAL_RGB structures which contain the desired palette register values.

wait_flag is reserved for future use, and should be 0 in all current versions of SAL.

Remarks:
This function has no effect when SAL is running in a high-color (15/16bpp) display mode. WinVFX applications should use the VFX_set_palette_range () / VFX_get_palette_range () functions instead of calling SAL directly.

SAL_get_palette_range

C Prototype:
void SAL_get_palette_range TC "SAL_get_palette_range" \l "3"

 XE "SAL_get_palette_range" (S32 index, S32 num_entries, SAL_RGB *entry_list)

Description:
Retrieves an array of RGB color values corresponding to a range of given 256-color palette entries.

Parameters:
index specifies the first palette entry to obtain, from 0 to 255.

num_entries specifies the number of palette entries to read.

*entry_list specifies the location of an array of num_entries SAL_RGB structures which will receive the palette registers' contents.

Remarks:
This function has no effect when SAL is running in a high-color (15/16bpp) display mode. WinVFX applications should use the VFX_set_palette_range () / VFX_get_palette_range() functions instead of calling SAL directly.

__

C Prototype:
void SAL_get_pixel_format TC "SAL_get_pixel_format" \l "3"

 XE "SAL_get_pixel_format" (S32 *pixel_pitch, S32 *bytes_per_pixel, S32 *R_shift, U32 *R_mask, S32 *R_width, S32 *G_shift, U32 *G_mask, S32 *G_width, S32 *B_shift, U32 *B_mask, S32 *B_width)

Description:
Retrieves information about the current native display format.

Parameters:
*pixel_pitch and *bytes_per_pixel receive values which define the number of actual and displayed bytes per visible pixel, respectively. Under all current versions of SAL, both pixel_pitch and bytes_per_pixel will be equal to 2 for 15/16bpp modes and 1 for 8bpp modes.

*R/G/B_shift specify the number of left-shifts needed to shift an RGB component of the bit width specified by *R/G/B_width into the position representing the native pixel RGB format. Alternatively this can be thought of as the number of right-shifts needed to right-justify an RGB component which has been masked with that component's *R/G/B_mask value.

*R/G/B_width specify the number of bits devoted to each component of an RGB pixel value in the native display format.

*R/G/B_mask specify both the bit width and shift values for each component, in the form of a mask word in which all bits assigned to that component in the native pixel format are set to '1', with all others '0'.

Remarks:
In 8bpp palettized color modes, the R/G/B_shift/width/mask parameters will receive undefined values.

NULL may be passed as a value for any pointer parameter whose value is not required by the application.

SAL_display_resolution

C Prototype:
void SAL_display_resolution TC "SAL_display_resolution" \l "3"

 XE "SAL_display_resolution" (S32 *X, S32 *Y)

Description:
Returns the current display resolution.

Parameters:
*X, if not NULL, receives the X-resolution in pixels for the current display mode.

*Y, if not NULL, receives the Y-resolution in scanlines for the current display mode.

__

C Prototype:
S32 SAL_display_page_count TC "SAL_display_page_count" \l "3"

 XE "SAL_display_page_count" (void)

Description:
Returns the number of active display pages being used by SAL.

Returns:
The number of active display pages

Remarks:
The returned value will always be at least 1 (for the "front-buffer" surface), plus 1 for each "back-buffer" surface available.

In full-screen or windowed DirectDraw mode, the returned value will range between 1 and the SAL_MAX_VIDEO_PAGES preference value which was in effect when the mode was established with SAL_set_display_mode ().

In windowed mode using CreateDIBSection() (SAL_USE_DDRAW_IN_WINDOW =NO), this function will return 2 to represent the front buffer and the single, emulated back buffer.

__

C Prototype:
void SAL_flip_surface TC "SAL_flip_surface" \l "3"

 XE "SAL_flip_surface" (void)

Description:
Exchanges the front and back virtual surfaces, revealing the contents of the previous back buffer.

Remarks:
In windowed mode using CreateDIBSection() (SAL_USE_DDRAW_IN_WINDOW =NO), this function will perform a StretchDIBits() call to simulate a page-flip operation.

In windowed mode using DirectDraw (SAL_USE_DDRAW_IN_WINDOW = TRUE), this function will perform an IDirectDrawSurface::Blt() call to simulate a page-flip operation.

In fullscreen DirectDraw mode, this function will perform an IDirectDrawSurface::Flip() to execute the page-flip operation.

In fullscreen DirectDraw mode with page-flipping disabled (SAL_USE_PAGE_FLIPPING = NO), this function will perform an IDirectDrawSurface::BltFast() call to simulate a page-flip operation.

SAL_blit_surface

C Prototype:
void SAL_blit_surface TC "SAL_blit_surface" \l "3"

 XE "SAL_blit_surface" (void)

Description:
Copies the current back buffer to the front (visible) surface.

Remarks:
In windowed mode using CreateDIBSection() (SAL_USE_DDRAW_IN_WINDOW NO), this function will perform a StretchDIBits() call to copy the emulated back buffer to the GDI output surface.

In windowed mode using DirectDraw (SAL_USE_DDRAW_IN_WINDOW = TRUE), this function will perform an IDirectDrawSurface::Blt() call.

In fullscreen DirectDraw mode with page-flipping disabled (SAL_USE_PAGE_FLIPPING = NO), this function will perform an IDirectDrawSurface::BltFast() call.

__

C Prototype:
void SAL_wipe_surface TC "SAL_wipe_surface" \l "3"

 XE "SAL_wipe_surface" (S32 surface, U32 color)

Description:
Clears a given surface to the desired color.

Parameters:
surface specifies either the front (SAL_FRONT_SURFACE) or back (SAL_BACK_SURFACE) surface to wipe.

color specifies the color value to be used for the wipe operation.

Remarks:
The specified color value should be a valid color word for the native display format in high-color modes, or a palette index from 0 to 255 in 8bpp mode.

SAL_lock_surface

C Prototype:
void SAL_lock_surface TC "SAL_lock_surface" \l "3"

 XE "SAL_lock_surface" (S32 surface, U8 **ptr, S32 *pitch)

Description:
Locks the front- or back-buffer display surface for writing.

Parameters:
surface normally specifies one of two constants:

SAL_FRONT_SURFACE: Lock and assign the front (visible) buffer to the window

SAL_BACK_SURFACE: Lock and assign the back (hidden) buffer to the window

**ptr points to a variable of type U8 *, which receives the address of pixel (0,0) in the display adapter's linear frame buffer. The application may use this pointer to write directly to the linear frame buffer.

*pitch points to a variable of type S32, which receives the width of each linear frame-buffer scanline in bytes. The application must use this value to advance the linear frame buffer address from one scanline to the next.

Remarks:
The returned *pitch value does not necessarily correspond to the horizontal resolution of the display mode in use.

The linear frame-buffer pointer returned at **ptr will be valid for writing until the surface lock is released with SAL_unlock_surface ().

Surface identifiers returned from SAL_allocate_video_surface () may also be passed to this function in the surface parameter.

In general, surface locks should not be retained for longer periods of time than necessary (i.e., more than one frame period). On many system configurations, SAL_lock_surface() causes the Win16 mutex lock to be asserted, effectively blocking use of other system resources. Each locked surface should be unlocked with SAL_unlock_surface() as soon as the application no longer needs a valid pointer to the surface.

__

C Prototype:
void SAL_unlock_surface TC "SAL_unlock_surface" \l "3"

 XE "SAL_unlock_surface" (S32 surface, S32 perform_flip)

Description:
Releases a display surface lock obtained from SAL_lock_surface (), optionally performing a page-flip operation to display the previously-locked surface.

Parameters:
surface specifies the dislpay surface to be unlocked. This should be the same surface identifier constant that was passed to SAL_lock_surface() to obtain the surface lock.

perform_flip, if TRUE, causes SAL to perform a page flip (DirectDraw mode) or StretchBlt() (CreateDIBSection mode) if the specified window is associated with the video surface's back buffer.

Remarks:
The perform_flip parameter has no effect if the window lock was originally obtained by calling SAL_lock_surface() with the SAL_FRONT_SURFACE parameter.

SAL_allocate_video_surface

C Prototype:
S32 SAL_allocate_video_surface TC "SAL_allocate_video_surface" \l "3"

 XE "SAL_allocate_video_surface" (S32 width, S32 height)

Description:
Allocates an offscreen video surface which conforms to the current display mode's pixel format.

Parameters:
width specifies the width of the video surface in pixels.

height specifies the height of the video surface in scanlines.

Returns:
-1 if an error occurs; otherwise, a constant surface identifier which may be used with SAL_wipe_surface (), SAL_lock_surface (), SAL_unlock_surface (), and SAL_release_video_surface ().

Remarks:
The front and back display surfaces (SAL_FRONT_SURFACE and SAL_BACK_SURFACE) are allocated implicitly by the SAL_set_display_mode () function.

In windowed mode using CreateDIBSection() (SAL_USE_DDRAW_IN_WINDOW = FALSE), this function obtains a system-memory surface from malloc().

The returned surface may be locked for writing by SAL_lock_surface().

Applications which support dynamic display-mode switching should be prepared to release and reallocate any offscreen video surfaces when a mode switch occurs. This is not handled automatically by SAL.

__

C Prototype:
void SAL_release_video_surface TC "SAL_release_video_surface" \l "3"

 XE "SAL_release_video_surface" (S32 surface)

Description:
Releases an allocated offscreen video surface.

Parameters:
surface specifies a surface identifier obtained from SAL_allocate_video_surface ().

Remarks:
Attempting to release the SAL_FRONT_SURFACE or SAL_BACK_SURFACE surfaces with this function will have no effect.

SAL_show_system_mouse

C Prototype:
void SAL_show_system_mouse TC "SAL_show_system_mouse" \l "3"

 XE "SAL_show_system_mouse" (void)

Description:
Makes the Windows system mouse cursor visible when the mouse is positioned over the application window.

Remarks:
By default, SAL hides the system mouse cursor whenever it appears over the application window.

The SAL_show_system_mouse() and SAL_hide_system_mouse () functions maintain an internal counter which allows calls to these functions to be nested. The mouse visibility state changes only when the counter passes through zero.

__

C Prototype:
void SAL_hide_system_mouse TC "SAL_hide_system_mouse" \l "3"

 XE "SAL_hide_system_mouse" (void)

Description:
Makes the Windows system mouse cursor invisible (hidden) when the mouse is positioned over the application window.

Remarks:
By default, SAL hides the system mouse cursor whenever it appears over the application window.

The SAL_show_system_mouse () and SAL_hide_system_mouse() functions maintain an internal counter which allows calls to these functions to be nested. The mouse visibility state changes only when the counter passes through zero.

__

C Prototype:
void SAL_constrain_mouse TC "SAL_constrain_mouse" \l "3"

 XE "SAL_constrain_mouse" (void)

Description:
Confines the Windows system mouse cursor to the screen area representing the application's window.

__

C Prototype:
void SAL_unconstrain_mouse (void)

Description:
Allows the Windows system mouse cursor to move anywhere on the screen, even outside the application's window.

SAL_startup

C Prototype:
S32 SAL_startup TC "SAL_startup" \l "3"

 XE "SAL_startup" (HINSTANCE instance, char *app_name, S32 allow_multiple_instances, SALEXITCB exit_handler)

Description:
Initializes SAL for subseqent use by the application.

Parameters:
instance receives the HINSTANCE parameter passed to the application's WinMain function.

app_name specifies the name of the application for use in the window title.

allow_multiple_instances, if TRUE, causes the SAL_startup() call to fail if an application of the same name is already running.

exit_handler specifies the address of an application-supplied callback function to handle shutdown of SAL resources upon termination of the application.

Returns:
Non-zero:
Success

0:
Failure

1:
Attempt to launch secondary instance with
allow_multiple_instances=FALSE

Remarks:
This function must be called prior to any other SAL function calls made by the application, including calls to SAL_set_preference () and SAL_set_display_mode ().

Refer to the "SAL Application Startup and Shutdown" section above for information on the use of the SAL startup and shutdown calls from the application's point of view.

__

C Prototype:
void SAL_shutdown TC "SAL_shutdown" \l "3"

 XE "SAL_shutdown" (void)

Description:
Shuts down SAL, releasing all internally-allocated resources.

Remarks:
This function should be called once, and only once, as the last step in the application's shutdown process. No further calls to SAL should be made after SAL_shutdown() is invoked.

Refer to the "SAL Application Startup and Shutdown" section above for information on the use of the SAL startup and shutdown calls from the application's point of view.

__

C Prototype:
HWND SAL_create_main_window TC "SAL_create_main_window" \l "3"

 XE "SAL_create_main_window" (void)

Description:
Registers a window class and creates the application's main window.

Returns:
The HWND window handle for the application's main window. This parameter is required by many Win32 API functions, and should be stored by the application if needed.

SAL_create_main_window_with_WNDCLASS

C Prototype:
HWND SAL_create_main_window_with_WNDCLASS TC "SAL_create_main_window_with_WNDCLASS" \l "3"

 XE "SAL_create_main_window_with_WNDCLASS" (const WNDCLASSEX *wc)

Description:
Creates the application's main window using the specified window class.

Parameters:
*wc points to a WNDCLASSEX structure created by the application.

Returns:
The HWND window handle for the application's main window. This parameter is required by many Win32 API functions, and should be stored by the application if needed.

Remarks:
Refer to the SAL_create_main_window () implementation in W32SAL.CPP for an example of typical WNDCLASS members used to initialize a window class suitable for use with SAL.

__

C Prototype:
S32 SAL_set_display_mode TC "SAL_set_display_mode" \l "3"

 XE "SAL_set_display_mode" (S32 display_size_X, S32 display_size_Y, S32 display_bpp, S32 initial_window_mode, S32 allow_mode_switch)

Description:
Attempts to establish the specified fullscreen or windowed display mode.

Parameters:
display_size_X specifies the desired X resolution (width) for the new display mode.

display_size_Y specifies the desired Y resolution (height) for the new display mode.

display_bpp specifies the desired bits-per-pixel color depth for the new display mode.

initial_window_mode should receive one of three possible values, defined in WINVFX.H:

SAL_FULLSCREEN_MODE // Set fullscreen DirectDraw mode

SAL_WINDOW_MODE // Set windowed mode, using either

 CreateDIBSection() or DirectDraw for screen refreshes

 (see SAL_USE_DDRAW_IN_WINDOW preference for more

 information)

SAL_TRY_FULLSCREEN // Try fullscreen mode, falling back to windowed mode if no

 fullscreen DirectDraw support is available for the

 specified mode

allow_mode_switch, if TRUE, allows the user to switch between windowed and fullscreen mode with the ALT-ENTER key combination or by clicking on the "maximize" button on the window caption bar, assuming the SAL_MAXIMIZE_TO_FULLSCREEN preference is left at its default value of TRUE.

Returns:
Non-zero if the mode was successfully set; zero if an error occurred.

Remarks:
When using SAL with the WINVFX libraries, the VFX_set_display_mode () function should be called by the application instead of SAL_set_display_mode ().

SAL_window_status

C Prototype:
S32 SAL_window_status TC "SAL_window_status" \l "3"

 XE "SAL_window_status" (void)

Description:
Returns a value which indicates whether the application is running in a window or in fullscreen mode.

Returns:
SAL_FULLSCREEN_MODE if the current display mode is a full-screen DirectDraw mode.

SAL_WINDOW_MODE if the application is currently running in a window using either DirectDraw or CreateDIBSection().

__

C Prototype:
void SAL_window_area TC "SAL_window_area" \l "3"

 XE "SAL_window_area" (SAL_WINAREA *area)

Description:
Returns the area of the Windows desktop occupied by the application's window.

Parameters:
*area points to a structure of type SAL_WINAREA which will receive the position and dimensions of the application window on the desktop.

Remarks:
In fullscreen mode, area->x and area->y will both be 0, with the current display resolution stored in area->w and area->h.

__

C Prototype:
void SAL_client_area TC "SAL_client_area" \l "3"

 XE "SAL_client_area" (SAL_WINAREA *area)

Description:
Returns the area of the Windows desktop occupied by the application window's client area, exclusive of any menus or borders.

Parameters:
*area XE "area" points to a structure of type SAL_WINAREA which will receive the position and dimensions of the client area of the application window on the desktop.

Remarks:
In fullscreen mode, area->x and area->y will both be 0, with the current display resolution stored in area->w and area->h.

__

C Prototype:
S32 SAL_is_app_active TC "SAL_is_app_active" \l "3"

 XE "S32 SAL_is_app_active" (void)

Description:
Returns a value indicating whether or not the application has the input focus.

Returns:
Non-zero if the application is "active," i.e., its window has the input focus.

SAL_register_focus_callback

C Prototype:
SALFOCUSCB SAL_register_focus_callback TC "SAL_register_focus_callback" \l "3"

 XE "SAL_register_focus_callback" (SALFOCUSCB fn)

Description:
Registers an application callback function which is called whenever the application gains or loses the input focus.

Parameters:
*fn specifies the address of the callback function.

Returns:
The address of the previous focus callback, or NULL if no focus callback function was previously registered.

Remarks:
The focus callback prototype should take the following form:

void SALEXPORT * focus_callback_function (S32 status) where status will be zero if the application is losing the input focus, or non-zero if gaining it.

This function is called from the WM_SETFOCUS / WM_KILLFOCUS message handlers in SAL's internal window procedure.

__

C Prototype:
WNDPROC SAL_register_WNDPROC TC "SAL_register_WNDPROC" \l "3"

 XE "SAL_register_WNDPROC" (WNDPROC fn)

Description:
Registers an application-supplied window procedure which is called from within SAL's internal window procedure.

Parameters:
fn specifies the address of the window procedure.

Returns:
The address of the previous application-supplied window procedure, or NULL if no window procedure was previously registered.

Remarks:
The window procedure prototype should be of type WNDPROC (defined by WINDOWS.H).

SAL's internal window procedure handles almost all of the necessary window-procedure mechanics on the application's behalf. However, applications which wish to monitor keyboard, mouse, or timer input (for example) may benefit from registering their own window procedure with SAL.

Any window procedure registered with this function will be called by SAL's own internal window procedure in lieu of DefWindowProc(), so the application handler is responsible for calling DefWindowProc() on SAL's behalf where appropriate to do so.

__

C Prototype:
void SAL_FlipToGDISurface TC "SAL_FlipToGDISurface" \l "3"

 XE "SAL_FlipToGDISurface" (void)

Description:
Calls the DirectDraw FlipToGDISurface() function on the application's behalf, allowing the application to display dialog boxes and other GDI objects while in DirectDraw full-screen mode.

Remarks:
This function has no effect when DirectDraw is not in use (i.e., in windowed mode with CreateDIBSection() active).

SAL_get_back_buffer_DC

C Prototype:
void SAL_get_back_buffer_DC TC "SAL_get_back_buffer_DC" \l "3"

 XE "SAL_get_back_buffer_DC" (HDC *dc)

Description:
Obtains a GDI device context for the DIB section or DirectDraw surface being used by SAL as the back buffer.

Parameters:
*dc points to a variable of type HDC (handle to GDI device context), which receives the requested handle.

Remarks:
This function may be used by the application to help render GDI objects on the SAL back buffer surface.

The device context handle obtained from this function should be released by calling SAL_release_back_buffer_DC () as soon as it is no longer needed.

__

C Prototype:
void SAL_release_back_buffer_DC TC "SAL_release_back_buffer_DC" \l "3"

 XE "SAL_release_back_buffer_DC" (HDC dc)

Description:
Releases a GDI device context handle obtained from SAL_get_back_buffer_DC().

Remarks:
The device context handle obtained from SAL_release_back_buffer_DC() should be released by calling SAL_release_back_buffer_DC() as soon as it is no longer needed.

__

C Prototype:
void SAL_serve_message_queue TC "SAL_serve_message_queue" \l "3"

 XE "SAL_serve_message_queue" (void)

Description:
Allows SAL to service the Windows message queue for the application window.

Remarks:
This function should be called by the application at least once per displayed frame, to give SAL a chance to check for and process queued Windows events. Failure to call this function over an extended period of time (more than a few seconds) may cause the application to appear "locked up" or otherwise uncooperative with Windows.

__

C Prototype:
void __cdecl SAL_alert_box TC "SAL_alert_box" \l "3"

 XE "SAL_alert_box" (C8 *caption, C8 *fmt, ...)

Description:
Presents an alert dialog (MessageBox() with MB_OK option) to the user, with the specified caption and body text.

Parameters:
*caption, if not NULL, specifies a text string for the alert box caption.

*format is a body text field identical to that used with the standard C printf() function.

Remarks:
The default alert box caption, if none is supplied, is "SAL Error".

SAL_register_DDSTARTUP_callback

C Prototype:
SALDDSTARTUPCB SAL_register_DDSTARTUP_callback TC "SAL_register_DDSTARTUP_callback" \l "3"

 XE "SAL_register_DDSTARTUP_callback" (SALDDSTARTUPCB fn)

Description:
Allows the application to register its own handler for DirectDraw initialization and configuration.

Parameters:
*fn specifies an application-supplied callback function of the form

HRESULT SALEXPORT startup_callback_function) (S32 res_X, S32 res_Y, S32 bpp, LPPALETTEENTRY initial_palette, BOOL32 fullscreen_mode, SAL_DDRAWINFO *dest)

where res_X, res_Y, and bpp specify the X resolution, Y resolution, and bits per pixel of the video mode which should be set up by the callback; initial_palette specifies a pointer to 256 palette entires with which to initialize the hardware palette in 256-color modes; fullscreen_mode is TRUE to indicate that a full-screen video mode is to be initialized, or FALSE for a window-based mode; and *dest is a pointer to a SAL_DDRAWINFO structure which should be filled in by the application with the addresses of the created DirectDraw objects.

Returns:
The previous DirectDraw startup handler. The first application call to SAL_register_DDSTARTUP_callback() will return the address of the default SAL DirectDraw startup handler.

Remarks:
By default, SAL uses the DirectDraw device associated with the primary Windows display (NULL GUID). Some applications may need to select other DirectDraw devices, override SAL's surface creation process, or otherwise configure DirectDraw for their own purposes, such as Direct3D utilization. This function allows the application to take over the entire DirectDraw object and surface initialization process from SAL.

The application should fill in the members of the SAL_DDRAWINFO structure which correspond to the DirectDraw objects it creates, invoking the default SAL DirectDraw startup callback function to fill in the missing members if the application does not create its own DirectDraw device and primary surface. The palette and clipper objects are optional.

See W32SAL.CPP for the implementation details of the default SAL DirectDraw startup handler.

Most applications should not need to override the default DirectDraw initialization and shutdown process implemented by SAL.

SAL_register_DDSHUTDOWN_callback

C Prototype:
SALDDSHUTDOWNCB SAL_register_DDSHUTDOWN_callback TC "SAL_register_DDSHUTDOWN_callback" \l "3"

 XE "SAL_register_DDSHUTDOWN_callback" (SALDDSHUTDOWNCB fn)

Description:
Allows the application to register its own handler for DirectDraw shutdown.

Parameters:
*fn specifies an application-supplied callback function of the form void shutdown_callback (SAL_DDRAWINFO *dest) where *dest points to the SAL_DDRAWINFO structure which resulted from the creation of the DirectDraw objects by the DirectDraw startup handler.

Returns:
The previous DirectDraw shutdown handler. The first application call to SAL_register_DDSTARTUP_callback () will return the address of the default SAL DirectDraw shutdown handler.

Remarks:
See SAL_register_DDRAWSTARTUP_callback() for more details about the application-supplied

DirectDraw initialization function.

See W32SAL.CPP for the implementation details of the default SAL DirectDraw shutdown handler.

Most applications should not need to override the default DirectDraw initialization and shutdown process implemented by SAL.

__

C Prototype:
SAL_DDRAWINFO SAL_get_DDRAW_info TC " SAL_get_DDRAW_info" \l "3"

 XE "SAL_get_DDRAW_info" (void)

Description:
Allows the application access to the DirectDraw objects used by SAL.

Returns:
A copy of the SAL_DDRAWINFO structure currently used by SAL's internal DirectDraw interface code.

Remarks:
See the SAL_DDRAWINFO structure description for the information returned by this function.

Most applications should not need to inspect or use the DirectDraw objects created by SAL.

TGA2SHP

TGA2SHP, which stands for ".TGA to .SHP converter," may be used as a Windows-based replacement for the DOS-based VFX GETSHAPE program for VFX shape table construction. Instead of requiring an ASCII script file to describe the origin, screen coordinates, and other parameters of shapes to be "lifted" from a source image, TGA2SHP allows the artist to draw a set of shapes to a .TGA file in Photoshop (or other drawing tool), placing rectangular frames around each shape to specify the area to be converted to a VFX shape.

TGA2SHP accepts one command-line argument, the name of the source .TGA image file. The output .SHP file will be saved in the same directory using the same filename prefix. One limitation of TGA2SHP which is not shared by the earlier GETSHAPE utility is that there is a one-to-one relationship between input .TGA files and output .SHP table files. Consequently, only one screen's worth of shapes may be compiled into a single shape table by TGA2SHP.

The source .TGA image must meet the following requirements:

· Must be saved as a 24-bit (true-color) file.

· May be any desired size (320x200, 640x480, 1280x1024, 4096x4096, 69x105, whatever), limited only by available memory.

· May be "dragged and dropped" atop the icon for TGA2SHP.EXE on the desktop, for those who aren't into command-line interfaces.

· May contain any number of shapes to be grabbed, drawn with any desired number of colors.

· Must be filled with a "background color" which is treated as a transparent color when grabbing shapes, overlaid with the shape images themselves.

· The background color must be chosen as a color (e.g., lurid purple) which is not used as a non-transparent color in any shape. TGA2SHP uses the lower-leftmost pixel in the .TGA file to determine the artist's choice of background color for the file.

Shapes are acquired from the .TGA image file in order of the placement of the upper-leftmost pixel of their "bounding box," from the top scanline of the overall image to the bottom. Shapes whose bounding boxes' top lines occur on the same scanline will be acquired in left-to-right order. The first shape to be acquired will be stored in the output VFX shape table as shape number 0, followed by the rest of the shapes in their specified order of acquisition.

Like the transparent color, the bounding box of each shape should be drawn with a color (e.g., bright green) which is not used as a solid color anywhere in the shape it encloses. The bounding box MUST be only one pixel thick, and must be a perfect axis-aligned rectangle (no gaps, jaggies or pixel overruns at the corners) in order for TGA2SHP to locate it properly. Ordinarily you will want the bounding box to be the smallest rectangle that encloses the shape to be acquired.

By default, the shape's origin or "hot spot" will correspond to the upper-leftmost pixel inside the shape's bounding box. The "origin" defines the spot in the shape which will be drawn at the (x,y) position specified by the programmer when drawing the shape in the application. The default upper-left origin position is fine for most applications, but shapes which will be drawn as cursors, for example, or which will be drawn with rotation and scaling applied by VFX_shape_transform(), may need a specific origin. In such a case, the shape's origin may be explicitly positioned anywhere in the shape's bounding box – even outside the visible boundaries of the shape itself -- by selecting a third uniquely-unused color (e.g., sickly cyan) and using it to mark the pixel in the shape's bounding box which corresponds to the desired shape origin. It is then necessary to let TGA2SHP know the actual, desired color of the origin pixel, by turning the lower-rightmost pixel of the shape's bounding box to the desired origin pixel color. The origin "marker" color is then stored in the upper-leftmost pixel of the bounding box, to let TGA2SHP know what color marks the origin of the shape.

TGA2SHP can be used either as a command-line executable or a "drag-and-drop" target in Windows Explorer.

VFX Tools Reference TC "VFX Tools Reference" \l "1"

 XE "VFX Tools Reference"
GETFONT: Font Conversion Utility TC "GETFONT: Font Conversion Utility" \l "2"

 XE "GETFONT\: Font Conversion Utility"
The GETFONT program builds VFX font tables from grid templates stored as .GIF, .PCX, or .LBM files.

GETFONT has the following command line syntax:

GETFONT infile outfile [background_color]

The infile XE "infile" parameter specifies the image file name. The image must be a 256-color .LBM, .PCX, or .GIF file. The source file must also be drawn as a grid of character cells as shown below:

The font image should be drawn with a minimum of three colors. The grid, the background, and the text should all be different colors. The background color is shown as transparent on this page. The grid color is gray, and the text color is black. The actual text in a 256 color font grid may use up to 254 different colors.

The character cells are numbered from left to right, and top to bottom starting with zero. Normally, the most convenient arrangement for the programmer would be to follow the standard ASCII format for defining character values. Thus, the capitalized alphabet begins in character cell #65 decimal, while the lowercase alphabet begins in cell #97 decimal.

The outfile parameter specifies the file name of the VFX standard binary font file to create. This file is in a format compatible with the VFX font functions.

The optional background_color parameter specifies the color (0-255) in the source image file to be used as the background color.

Some graphics file formats, such as .GIF and .LBM, allow a background color to be explicitly defined. When the background_color parameter is included, the value specified will override any background color which may have been defined in the original image file. .PCX source files must be used with an explicitly specified background color.

Version 1.20 of the DOS GETFONT program appends the font source image’s palette as an array of VFX_RGB values as the last 768 bytes in the output file.

GETSHAPE: VFX Shape Compiler Utility TC "GETSHAPE: VFX Shape Compiler Utility" \l "2"

 XE "GETSHAPE\: VFX Shape Compiler Utility"
The GETSHAPE program builds standard VFX shape tables from images stored in 256-color .GIF, PCX, .LBM, .FLI, .FLC or other VFX .SHP files.

GETSHAPE has the following command line syntax:

GETSHAPE rspfile outfile
The rspfile parameter specifies the file name of the VFX GETSHAPE response file to be used in compiling the shapes.

The response file provides the GETSHAPE utility program with a list of source images and areas within those images to compile into a VFX VFX shape table. The response file is a text file with one shape definition or comment on each line.

Comments are delineated in a response file just as they are in a C++ source file. Any characters on a line after the '//' token are ignored.

A shape definition may consist of one or many parameters. The simplest shape definition line in a response file would define the source file name only. Any additional parameters are optional. Parameters in a shape definition line are separated by semicolons ';'.

Each parameter may be listed in either a verbose or an abbreviated format. Generally, the verbose format will spell out the full name of the parameter and use an underscore '_' to connect words instead of a space ' '. The abbreviated parameter format will generally be the first character of each word in the parameter name. A complete list of parameters and their abbreviations is listed below.

ABBREVIATION
VERBOSE

sf=xxx

source_filename=filename

fn=n

frame_numbers=n,n

sn=n

shape_number=n

tl=x,y

top_left=x,y

br=x,y

bottom_right=x,y

hs=x,y

hot_spot=x,y

tc=n

transparent_color=n

sc

save_colors

The source_filename=filename parameter specifies the file name of the .PCX, .LBM, .GIF, .FLI., FLC or .SHP source image.

The frame_numbers parameter specifies the first and last frames (inclusive) in .FLI or .FLCsource files. This parameter is necessary only when the source file is a .FLI or .FLC file.

The shape_number parameter specifies the shape # in .SHP source file. This parameter is necessary only when the source file is a VFX .SHP file and the desired source shape is not the only one in the file.

The top_left=x,y parameter specifies the upper-left corner of the image area in pixels. If the top_left is not specified the parameter defaults to the upper-leftmost pixel of the source image.

The bottom_right=x,y parameter specifies the bottom-right corner of the image area in pixels. If the bottom_right is not specified the parameter defaults to the lower-rightmost pixel of the source image.

The hot_spot=x,y parameter specifies the point within the image which will become the logical 'handle' for shape. Whenever a shape is drawn using VFX_shape_draw (), a destination position must be specified. The shape will be drawn so that the hotspot is located at the destination position specified when the VFX_shape_draw() function is called. If the hot_spot is not specified the parameter defaults to the upper-leftmost pixel of the source image.

The transparent_color=n parameter specifies which color in the shape will be defined as transparent. Any pixels in the shape which use the transparent color will be skipped when the shape is drawn. (This is accomplished with no performance penalty, due to the way VFX shapes are encoded.) If transparent_color is not specified, then the background color of the source image is used. The transparent_color parameter must be present if the source image comes from a .PCX or VFX .SHP file. A shape may be compiled with no transparent areas by specifying the value -2 for its transparent_color parameter.

When the save_colors switch is present, the palette information for all of the colors used in the shape will be stored with the shape in the shape file.

Sample response file:

sf=frotz.pcx; tl=0,0; br=20,20; tc=255; hs=10,10

sf=ozmoo.gif; tl=5,5; br=80,80; tc=128;

sf=rezrov.shp; sn=69; tl=15,35; br=80,80; tc=128;

sf=bird.fli; fn=2,14; tl=32,4; br=287,195; hs=128,96; sc; tc=0

The GETSHAPE outfile parameter specifies the file name of the VFX standard binary shape table file to create. This file is in a format compatible with the VFX shape functions. In this manual, the file extension .SHP is used to refer to VFX shape table files. However, no VFX tools enforce this convention.

SHOWPIC: Picture Display Utility TC "SHOWPIC: Picture Display Utility" \l "2"

 XE "SHOWPIC\: Picture Display Utility"
The SHOWPIC program displays images stored as VFX .SHP or 256-color .GIF, .PCX, .LBM, .FLI or .FLC files.

SHOWPIC has the following command line syntax:

SHOWPIC infile [frame_number|(shape_number|ALL)] [/NS]

The infile parameter specifies the file name of the 256-color image or animation to display.

The optional frame_number parameter specifies the index number (starting with 1) of the frame in a .FLI or .FLC file to display. If frame_number is not specified, then the entire animation will be played repeatedly.

The optional shape_number parameter specifies the index number (starting with 0) of the shape in a VFX .SHP file to display. This parameter is useful only when displaying VFX .SHP files, since multiple images may be stored in .SHP files. If shape_number is not specified, then the first shape (shape_number=0) in the file will be displayed.

If the word ALL is used in place of a VFX shape number, the images in the shape file will be displayed in sequence as an animation. The keyword ALL is useful only with VFX .SHP files.

The optional /NS switch directs the program not to scale the image up to the screen size. This may be useful when the image size is smaller than the screen size. Any images which are larger than the screen will be automatically scaled down to fit the screen.

Note:
When SHOWPIC.EXE is used to display shapes from a .SHP file, the color palette information may or may not be available. Any shapes stored in a .SHP file without palette information will not be colored properly when they are displayed using SHOWPIC. The save_colors option must be used when creating shape files with GETSHAPE.EXE to ensure they will be displayed correctly using SHOWPIC.EXE.

VFX File Formats TC "VFX File Formats" \l "2"

 XE "VFX File Formats"
VFX Font File Format

Fonts created by GETFONT.EXE are stored in an arrayed character table file format. Characters are drawn directly from the shape table by VFX_character_draw. The VFX standard font table format is as follows:

(Font Table File)

S32 version

S32 char_count

S32 char_height

S32 font_background

(offsets)

(character data)

 ...

version

This is a 32‑bit signed integer which gives the version number of the shape table in ASCII. The value will be in the form "1.00".

char_count

This is a 32‑bit signed integer which gives the number of characters in the font file.

char_height

This is a 32-bit signed integer which gives the height (in pixels) of every character in the font.

font_background

This is a 32-bit signed integer which specifies the background color for every character in the font. The valid range of values is from 0 to 255.

The offsets section lists the location of each character in the file. There is one entry in the offset table for each character in the file.

(offsets)

(offset)

 ...

Each offset table entry consists of one file offset.

(offset)

S32 character_offset
character_offset

This is a 32-bit unsigned integer which gives the offset (in bytes) of the corresponding character from the beginning of the font file.

(character data)

S32 char_width

S32 pixel_color

 ...

char_width

This is a 32-bit unsigned integer which gives the width of the character in pixels.

pixel_color

This is a 8-bit unsigned integer which gives the color of the corresponding pixel.

Characters are drawn from left to right, top to bottom. Thus, the list of pixel_color values corresponds to the pixels in the character from left to right, top to bottom.

Note: Version 1.2 of the DOS GETFONT program appends the font source image’s palette as an array of VFX_RGB values as the last 768 bytes in the output file.

VFX Shape File Format TC "VFX Shape File Format" \l "3"

 XE "VFX Shape File Format"
Shapes created by GETSHAPE.EXE are stored in an arrayed shape table file format. Shapes are drawn directly from the shape table by VFX_shape_draw (). The VFX standard shape table format is as follows:

(Shape Table File)

S32 version

S32 number_of_shapes_in_table

(offsets)

(shape)

 ...

version

This is a 32‑bit unsigned integer which gives the version number of the shape table in ASCII. The value will be of the form "1.00".

number_of_shapes_in_table

This is a 32‑bit signed integer which gives the number of shapes in the shape table.

The offsets section lists the location of each shape in the file. There is one entry in the offset table for each shape in the file.

(offsets)

(offset)

 ...

Each offset table entry consists of two offsets from the beginning of the file (SEEK_SET).

(offset)

U32 shape

U32 colors
shape

This is a 32-bit unsigned integer which gives the offset (in bytes) of the corresponding shape from the beginning of the .SHP file.

colors

This is a 32-bit unsigned integer which gives the offset (in bytes) of the corresponding shape's color information from the beginning of the .SHP file. If this pointer is null, the save_colors option was not used in GETSHAPE.EXE when the shape file was created.

When color information is stored for a shape, the following structure is used.

(colors)

U32 number_of_colors_in_list

(color)

 ...

number_of_colors_in_list

This is a 32-bit unsigned integer which gives the number of colors used in the corresponding shape and listed in the following color table.

(color)

U8 color_number

U8 R

U8 G

U8 B
color_number

This is a 8-bit unsigned integer which gives the color number used in the shape for the following RGB value.

R G B

These are 8-bit unsigned integers which specify the palette color values.
The VFX shape format is described below by diagrams describing the various parts of the shape description.

(shape)

(header)

(body)

(header)

S32 bounds

S32 origin

S32 xmin

S32 ymin

S32 xmax

S32 ymax

bounds

This is a packed 32‑bit pair of 16‑bit coordinates which describe the size of the shape, including any transparent areas. The upper 16 bits contain the x dimension and the lower 16 bits hold the y dimension.

Only the visible portion of a shape is stored in the shape file. The bounds parameter allows a shape to include a transparent border on one or more sides.

origin

This is a packed 32‑bit pair of 16‑bit coordinates which describe the location of the shape's origin or upper-left bound, including any transparent areas. The upper 16 bits contain the x coordinate and the lower 16 bits hold the y coordinate. The coordinate values specify the location of the shape’s upper-left bound relative to the origin, or "hot spot," which can be inside or outside the shape rectangle. The hot spot is the location which is considered the center of the shape for purposes of drawing or otherwise manipulating the shape. For example, if the shape’s hot spot is defined one pixel to the left and one scanline above the shape’s visible (non-transparent) boundary, the origin coordinate will be (-1,-1).

xmin, ymin, xmax, ymax

These are 32‑bit signed integers which describe the size of the visible shape. (xmin, ymin) and (xmax, ymax) constitute coordinate pairs which describe the upper‑left and lower‑right corners of the smallest rectangle which can fully enclose the visible shape. The coordinate values are relative to the "hot spot," which can be inside or outside the shape rectangle. (The hot spot is the location which is considered the center of the shape for purposes of drawing or otherwise manipulating the shape).

xmin is the x coordinate of the left‑most pixel in the shape.

ymin is the y coordinate of the top‑most pixel in the shape.

xmin is the x coordinate of the right‑most pixel in the shape.

ymin is the y coordinate of the bottom‑most pixel in the shape.

Consequently, the rectangle described by (xmin, ymin), and (xmax, ymax) is the smallest rectangle which can enclose the shape. There are no empty rows above or below the shape, and there are no empty columns to either side of the shape. Use the bounds and origin parameters to include transparent rows and columns of pixels.

The width of the enclosing rectangle is xmax ‑ xmin + 1. The height of the enclosing rectangle is ymax ‑ ymin + 1.

xmin, ymin, xmax, and ymax are relative to the hot spot. For example, the hot spot is in the center of the shape, and the enclosing rectangle is 17 pixels wide and 5 pixels tall, the coordinates will be:

(xmin, ymin) = (‑8, ‑2) & (xmax, ymax) = (+8, +2)

If the same shape had its hot spot in the upper left hand corner, the coordinates would be:

(xmin, ymin) = (0, 0) & (xmax, ymax) = (16, 4)

These coordinates:

(xmin, ymin) = (100, 100) & (xmax, ymax) = (116, 104)

... would place the hot spot below and to the right of the shape, which is entirely legal. The coordinates are 32‑bit signed integers, so extremely large offsets can be represented.

The number of lines in the body of the shape must be exactly the height of the enclosing rectangle, i.e.: ymax ‑ ymin + 1.

(body)

(line)

 ...

(line)

(regular_packet)

 ...

(end_packet)

(regular_packet)

(run_packet) | (string_packet) | (skip_packet)

Run, String, and Skip packets can appear in any order. Very long runs and skips can be represented by repeated packets of the same type. Vertical | strokes between items indicate a choice of exactly one of the delimited items.

(run_packet)

U8 run_token

U8 run_pixel

run_token

This is an unsigned 8‑bit integer whose value is 2n where n is the run length which is in the range 1..127. The run length specifies the number of run_pixels (below) to draw.

run_pixel

This is an unsigned 8‑bit integer which specifies the pixel to be drawn run‑length times.

(string_packet)

U8 string_token

U8 [string_pixel]

string_token

This is an unsigned 8‑bit integer whose value is 2n+1, where n is a string length in the range 1..127. The string length specifies the number of string_pixels (below) to draw.

string_pixel

This is an unsigned 8‑bit integer which specifies a pixel to be drawn. A string of string‑count pixels follows every string_token. The [Brackets] indicate one or more repetitions of the enclosed item.

(skip_packet)

U8 skip_token

U8 skip_length

skip_token

This is an unsigned 8‑bit integer whose value is 1. A skip token specifies a region of the shape rectangle which is not occupied by any visible portion of the shape. (i.e.: a transparent region). The region is a horizontal line of length skip_length (see below).

skip_length

This is an unsigned 8‑bit integer in the range (1..255) which specifies the length of a skipped region in pixels. A skip_length of 0 is reserved for future use by Miles Design.

Because skip packets are used in the this format, there is no requirement for a special "transparent color." Therefore all 256 pixel values can be represented in addition to transparency.

Note:
VFX_shape_scan () requires a designated transparent color. An invalid transparent color number (such as -1) may be passed to indicate that the shape has no transparent regions.

(end_packet)

U8 end_token

end_token

This is an unsigned 8‑bit integer whose value is 0. This token marks the end of a line.

Empty lines within the shape are represented by a single end_token.

Glossary TC "Glossary" \f C \l "1"

 XE "Glossary"
16.16 Specifies a fixed point value with 16 bits left of the decimal point and 16 bits right of the decimal point.

application programmer Person using VFX to create applications for other users.

clipping The process of restricting drawing operations to a limited area of the screen or memory. Of the object being drawn, only the portion inside the clipping region will be drawn.

color index An index number into the VGA palette of 256 colors. The palette will contain the color's RGB values. See also: palette, RGB.

DLL See: Dynamic Link Library.
Dynamic Link Library A file which contains a library of executable functions. These functions may be loaded and selectively executed at run-time under the control of the application.
fixedpoint A numerical value with a fixed number of bits allocated for the real portion of the value and a fixed number of bits allocated for the decimal portion of the value.

GIF Stands for Graphics Interchange Format. This is a popular graphics file format. VFX provides read-only support for files using GIF.

hotspot The point within a VFX shape which is the logical 'handle' for shape. Whenever a shape is drawn using VFX_shape_draw(), a destination position must be specified. The shape will be drawn so that the hotspot is located at the destination position specified when the VFX_shape_draw() function is called.

ILBM This is a popular graphics file format. VFX provides read-only support for files using ILBM. See also: LBM

LBM This is a popular graphics file format. VFX provides read-only support for files using LBM. See also: ILBM

link (DLL) In the context of Dynamic Link Libraries, link is used to describe the process of initializing a VFX DLL. The linking process involves updating all internal references so that the DLL may be placed at any free memory location.

palette A palette is a list of colors. The colors are described by RGB values. The standard VGA supports a maximum of 256 colors in the VGA palette. See also: color index, RGB.

PANE A PANE defines a clipping region within a VFX_WINDOW. VFX functions automatically clip to VFX_WINDOW boundaries, while PANEs provide a method for clipping within the boundaries of a VFX_WINDOW. See also: VFX_WINDOW.

PCX This is a popular graphics file format. VFX provides read-only support for files using PCX.

pixel Refers to a single point of light on the screen. The term pixel may also refer to the location in a memory buffer which is used to control a point of light on the screen.

point A single location in a coordinate system. The coordinate system may be either two or three dimensional.
resolution Refers to the number of horizontal and vertical pixels in a screen or memory area.

RGB Stands for Red, Green, and Blue. All colors displayable by standard CRT displays (albeit not all colors visible to the human eye!) can be described in terms of their relative red, green, and blue components. The standard IBM VGA supports 6 bits of information in each of the R, G, and B elements. The VGA palette consists of 256 RGB values. See also: color index, palette.

SHP The file extension .SHP is often used to denote a VFX shape table file. The .SHP extension is suggested but not required by any VFX functions or utility programs.

System RAM Random-access memory which is directly accessible by the CPU at any time; i.e., not shared with the video controller. See also: Video RAM.

user Person using applications created with VFX by application programmers.

vertex A single point in a coordinate system where two edges of a polygon meet. The coordinate system may be either two- or three-dimensional.
vertices Plural of vertex.

VFX Driver A dynamic-link library which contains any functions specific to the video card in use.

Video RAM Random-access memory which resides within the video system. Although this memory is directly accessible by the CPU, it is usually shared or multiplexed between the CPU and video controller buses. Video subsystems may impose performance penalties on accesses to video RAM.

VFX_WINDOW A VFX_WINDOW is a fixed length memory buffer which contains pixel information for a rectangular part of the screen. See also: PANE.
Index

A

area
75

G

GETFONT: Font Conversion Utility
81

GETSHAPE: VFX Shape Compiler Utility
82

GIF
24

Glossary
90

I

infile
81

Introduction
4

P

PANE
12

PANE_LIST
13

S

S32 SAL_is_app_active
75

SAL API Overview
59

SAL Application Program Interface Reference
59

SAL_alert_box
77

SAL_allocate_video_surface
71

SAL_blit_surface
69

SAL_client_area
75

SAL_constrain_mouse
72

SAL_create_main_window
73

SAL_create_main_window_with_WNDCLASS
74

SAL_DDRAWINFO
62

SAL_debug_printf
63

SAL_display_page_count
68

SAL_display_resolution
68

SAL_flip_surface
68

SAL_FlipToGDISurface
76

SAL_get_back_buffer_DC
77

SAL_get_DDRAW_info
79

SAL_get_palette_entry
66

SAL_get_palette_range
67

SAL_get_pixel_format
67

SAL_get_preference
63

SAL_hide_system_mouse
72

SAL_lock_surface
70

SAL_register_DDSHUTDOWN_callback
79

SAL_register_DDSTARTUP_callback
78

SAL_register_focus_callback
76

SAL_register_WNDPROC
76

SAL_release_back_buffer_DC
77

SAL_release_video_surface
71

SAL_RGB
62

SAL_serve_message_queue
77

SAL_set_display_mode
74

SAL_set_palette_entry
66

SAL_set_palette_range
66

SAL_set_preference
64

SAL_show_system_mouse
72

SAL_shutdown
73

SAL_startup
73

SAL_unlock_surface
70

SAL_WINAREA
62

SAL_window_area
75

SAL_window_status
75

SAL_wipe_surface
69

SHOWPIC: Picture Display Utility
84

V

VFX API Data Structures and Functions
8

VFX API Overview
5

VFX Application Program Interface (API) Reference
5

VFX File Formats
85

VFX Shape File Format
86

VFX Tools Reference
81

VFX_assign_window_buffer
9

VFX_character_draw
10

VFX_character_width
11

VFX_color_scan
11

VFX_color_to_RGB
14

VFX_Cos_Sin
20

VFX_CRGB
12

VFX_dithered_Gouraud_polygon
21

VFX_ellipse_draw
22

VFX_ellipse_fill
22

VFX_fixed_mul
22

VFX_flat_polygon
23

VFX_FONT
14

VFX_font_height
23

VFX_get_palette_entry
15

VFX_get_palette_range
15

VFX_GIF_draw
24

VFX_GIF_palette
24

VFX_GIF_resolution
24

VFX_Gouraud_polygon
25

VFX_ILBM_draw
26

VFX_ILBM_palette
26

VFX_ILBM_resolution
26

VFX_illuminate_polygon
27

VFX_line_draw
28

VFX_lock_window_surface
15

VFX_map_polygon
30

VFX_pane_construct
31

VFX_pane_copy
32

VFX_pane_destroy
33

VFX_pane_list_add
33

VFX_pane_list_add_area
34

VFX_pane_list_clear
34

VFX_pane_list_construct
35

VFX_pane_list_delete_entry
35

VFX_pane_list_destroy
36

VFX_pane_list_get_entry
16

VFX_pane_list_identify_point
16

VFX_pane_list_refresh
36

VFX_pane_scroll
37

VFX_pane_wipe
38

VFX_PCX_draw
39

VFX_PCX_palette
39

VFX_PCX_resolution
39

VFX_pixel_read
40

VFX_pixel_value
16

VFX_pixel_write
41

VFX_POINT
13

VFX_point_transform
41

VFX_rectangle_hash
42

VFX_RGB
13

VFX_RGB_value
14

VFX_set_display_mode
17

VFX_set_palette_entry
18

VFX_set_palette_range
18

VFX_shape_area_translate
19

VFX_shape_bounds
42

VFX_shape_colors
43

VFX_shape_count
43

VFX_shape_draw
44

VFX_shape_list
44

VFX_shape_lookaside
45

VFX_shape_minxy
45

VFX_shape_origin
46

VFX_shape_palette
46

VFX_shape_palette_list
47

VFX_shape_remap_colors
47

VFX_shape_resolution
48

VFX_shape_scan
48

VFX_shape_set_colors
49

VFX_shape_transform
50

VFX_shape_translate_draw
52

VFX_shape_visible_rectangle
53

VFX_string_draw
54

VFX_translate_polygon
55

VFX_triplet_value
20

VFX_unlock_window_surface
20

VFX_WINDOW
12

VFX_window_construct
55

VFX_window_destroy
56

�PAGE \# "'Page: '#'�'"�Page: 112���

_945548164.doc
�

�

