TOSHIBA Application Note

Ref No. AN24-03

Key Scanning and LED Driving with the TMP86P202/203

Used Features: Application Note Category
- . O Software Algorithm
v
Key matrix scanning (rows and columns) O MCU specific
OR System Solution
O Basic Design Technique
v Key detection by ADC input
v' LED 7 segment driving
v Tone generation Toshiba 8-bit Series
v Time base timer O TLCS - 870
TLCS - 870/C
v Divider output O TLCS - 870/X
Introduction
TMP86P202P/M
This application note describes techniques for key detection TMP86P203P/M
using a minimal number of I/O lines with the TMP86P202/203.

One approach scans the keys arranged as a matrix of rows and
columns by multiplexing lines which are also used for display
driving. The second alternative approach detects key presses
via a single ADC input.

It features as an example, a simple minute-minder timer
application which takes input from 12 keys and drives a 2 by 7
segment display. It also illustrates tone generation for key re-
assurance and alarm tone generation.

By:

Toshiba Electronics Europe GmbH
European LSI Design Eng. Center -
ELDEC
Support-MCU@tee.toshiba.de

www.toshiba-components.com January, 2003 TOSHIBA

Application Note - AN24-03 - Page 2 of 21

Hardware Schematic — Key Matrix Example

Vdd IC1
Crystal or Resonator

(e.g. 8.000 MHz)
Xin
[17 VDD :]
c3
_'['_1 00nF Xout | Vdd
— — For re-assurance
BUZZ

and alarm tone R3 | R4

Column pull-ups (1M)

BC337
4K7] R5
SEGO to SEG6 =

P30 o

P12

Segment current limiting
resistors (2K2)

These resistors Reé > >R8 g R13 é § § § é §
prevent multiple g g R20
R11 R12

P36

switch presses
bringing on /‘v R7 R9 R10
unwanted
segments / Columns
(47k) Rows ol o
2 Y Y
0| o-| o-| —o- T=F1-r4-r-- 11— PR N -
rf T—(lrf 7—01—7 7—0.—f I : I :
RESET* -0 | o | o | SZ | Z
e 1 e ja e |2 rf | S’Z S|Z S’Z S’Z S|Z| | |
(o7 = | — L — !
I L DIGIT A : I L DIGIT B :
2u2 TEST HDSP-A103 : N} | : /N |
VSS oo DIGIT_A SEL* o __ [P I
«) HDSP-A103
o = PO DIGIT_B_SEL 2 by 7 segment common cathode LED display
v =

TMP86P202

Figure 1 - The schematic of the sample timer using row and column scanning for key detection.

Hardware Description -— Row and Column Scanning Key Detection

PROCESSOR BASICS

The TMP86P202 processor is fed directly from the 5 volt supply and its internal oscillator circuitry is
used with an 8 MHz crystal, giving a minimum processor instruction time of 0.5us. The internal reset
Schmitt input with built in pull-up means that an external capacitor to ground is all that is required to
generate a delayed reset signal at power up.

TONE SIGNALS

The DVO 'Divider Output’ of the TMP86P202 can be configured to generate a 50 % square wave at an
appropriate fraction of the main clock frequency and this is therefore used to generate drive signals
for a buzzer to give a key re-assurance beep. The low cost TR1 common emitter stage provides the
necessary simple current amplification to allow the logic signal generated at P12 to drive the sounder
LS1.

DISPLAY MULTIPLEXING

The design uses time multiplexing to allow both the displays to be driven from a single set of segment
drive signals. The individual digits are selected by the software in turn by driving their common
cathode low. Pulling one set of cathodes low like this means that current provided by the segment

www.toshiba-components.com February, 2003 TOSHIBA

drivers can only flow down through that digit. This means we can share the segment drives for all the
digits and this keeps the pin count down.

These digit select outputs have to sink all the current flowing through all the segments in their
corresponding digit. Port 0 of the TMP86P202 has a high current capability which is sufficient to sink
the sum of segment currents for a high efficiency such as the HDSP-A103. Lines P00 and P01 are
therefore each used for direct digit strobes, saving the costs and board area of additional drivers. P30
to P36 are standard port pins and these are used to drive the individual segments directly via R13 to
R20. The LEDs which form the individual segments of the displays have a forward voltage drop of 1.6
volts at a forward current of 1mA. With a five volt supply and 1.6 volt drop the maximum voltage
across the segment limiting resistors will be 3.4 volts. Choosing 2k2 resistors here limits the maximum
current to 1.55mA., below the quoted maximum 1.8 mA source current for TMP86P202 standard pins.
Note that all the segment currents sum to form the current that the digit outputs must sink. When all
7 segments are on this gives a maximum current into the digit outputs of 1.55 * 7 or 10.8mA, well
below the 30 mA quoted maximum for these high current pins. In practice small voltage drops in the
segment and digit driving outputs will reduce these currents a little.

NOTE ON USE OF HIGHER CURRENT DISPLAYS

Higher current displays can be easily driven using simple transistor buffers to provide additional
segment and digit currents. These can be high gain bipolar or FETs with low Vgs (threshold) to ensure
that can be driven hard into conduction by the logic level outputs of the TMP86P202/203.

KEYPAD INTERFACING

When keyboard scanning both the two digit drive outputs are set to the off state and consequently no
current can flow through the display segments. In this condition the segment drive lines can therefore
be re-used to scan the keyboard. The four port lines P30 to P33 are used as column inputs and weak
pull-up resistors R2 to R5 bias these lines high. The three port lines P34 to P36 are used as row
drives. The software drives these hard low in turn, reading the column inputs each time as it goes.
When any one of the 12 switches is pressed it will connect one particular row to one particular
column. It follows that where a switch is pressed the hard low on the row will overcome the weak
pull-up causing that column input to read as low.

For keyboard scanning only, R6 to R12 are not strictly necessary. However because we are re-using
display driving segment lines any made switches will have the effect of connecting one segment drive
line to another, causing unwanted display segments to illuminate during display multiplexing.

The choice of value for these resistors is therefore a compromise — they need to be high enough to
keep the unwanted segment currents when display driving acceptably low whilst still allowing enough
current to flow when key scanning to overcome the weak pull-ups on the column lines.

EMC/ESD CONSIDERATIONS

These series resistors R6 to R12 also perform a valuable EMC function — commonly used membrane
and other similar keypad arrangements provide a point of entry for static discharges, and these
resistors therefore help limit the amount of energy from ESD discharges to the keypad that can reach
the processor.

www.toshiba-components.com January, 2003

Hardware Schematic — ADC Based Key Detection

Vdd
Vvdd IC1
Crystal or Resonator Ls1
(e.g. 8.000 MHz)
Xi -
VDD in I C1 30pF tFoc::ere assurance
C3 —] c2
100nF Xout | T 30pF TR1
BC337
= BUZZ = R1
P12 AN L
SEGO to SEG6 aK7 -
P30
to
P36
Divider chain resistors
Vvdd (all 1K5)
R2 R3 R4
R15 Segment current limiting
§ é § § § é § resistors (2K2)
o |y S OJUFUST
R5 R6 R7 R8
Bt] R I B — —+—- -
|] i
. Y X!ZS!Z | I |
lJ__I—RESET R13 :S,ZS,ZSIZ F ¥i | f [
C4 — | - I | — I
I _' DIGIT A : I l_’ DIGIT B :
2u2 TEST Vs : o | : o |
VS poo DIGIT_A_SEL R14 470K —&- = o——— 4 __ | P I
i DIGIT_B_SEL* 2 by 7 segment common cathode LED display
ov = P01
HDSP-A103 HDSP-A103
TMP86P202

Hardware Description — ADC Based Key Detection

Apart from the key detection scheme, the remainder of the hardware is as for the key matrix
implementation described previously.

Key detection via the ADC is made possible using a divider chain from Vdd to ground (R2 to R13).
This chain is tapped at 12 points and operating any one key will therefore cause the potential at its
associated tap to be presented to the ADC input (port 37). R14 ensures that the ADC input is held
close to ground when no keys are pressed. It should be noted that this approach cannot readily be
used to detect multiple simultaneous key presses.

The source impedance of the ADC input needs to be kept low to prevent voltage loss due to the
charging of the internal sample and hold capacitance of the ADC. The worst case will be for the tap at
the centre of the chain. This has 6 1k5 resistors to Vcc and 6 to ground. The source impedance will
therefore be that of two 9k resistances in parallel or 4k5. This is lower than the 5k maximum source
impedance recommended for the device.

www.toshiba-components.com January, 2003 TOSHIBA

Software Description

The source code for the minute minder example is given at the end of this application note. This
includes a single ‘#define’ compile time switch ‘KEYS_VIA_ADC'. Defining this identifier will cause the
code to be built for ADC based key detection, leaving it undefined will invoke the key matrix scanning
instead.

OVERALL STRUCTURE

There is a simple conventional main loop, supported by a single fast heart beat interrupt.

MAIN LOOP

The main function calls an initialisation routines to set up the ports and the time base timer, enables
the time base timer interrupt and then loops continually.

This main loop carries out three actions in turn :-

Action Explanation/ Remarks
Check for key presses detected by the interrupt | Whenever the interrupt handler detects a new
handler key press it sets gucIntKeyScanCode to a non

zero value which represents the position of the
key in the key matrix. When this is detected by
the main line code the key scan code is converted
via a table look-up process into a key ‘value’
which, for clarity is selected to be an ‘ASCII'
value. The converted value is then tested and the
appropriate function carried out.

Handle elapsed time ticks recorded by the | guclntTicks is incremented in every time base
interrupt handler. timer interrupt. This section of main line code
copies this to its own count of elapsed ticks and
clears guclIntTicks. The elapsed tick count is then
used to decrement timers (in this case there is
only one used for tone duration timing). It is also
used to account for the passage of real time with
regard to the minute minder counts themselves.
The scaling uses as accumulator based method
described in more detail in a section below.

Translate the display digits ready for display | A flag gucDisplayUpdate is used to indicate
whenever they may have changed. whenever the display contents may have altered.
Setting this flag causes this code section to re-
translate the digits held in the main minutes
variables to corresponding segment patterns for
display. Doing the translation here in the main
line code keeps the interrupt code to a minimum
which is always a sound objective. The flag
means that the translation is only invoked when
necessary, keeping main loop time short.

INTERRUPT HANDLER AND INTERRUPT SUB-JOBS

On each invocation the handler for the time base timer interrupt carries out one of 3 different sub-
jobs. The first two such sub-jobs drive the display segments and the third looks for key presses.

DISPLAY DRIVING SUB JOBS

www.toshiba-components.com January, 2003 TOSHIBA

The display driving sub-jobs make the appropriate digit select line hard low and then apply the
segment conditions for that digit. These conditions then remain until the next interrupt.

KEY SCANNING SUB JOB - ROW AND COLUMN SCANNING
For this approach, the key scan logic can be represented simply as follows :-

For each row in turn, drive the column hard low and set its neighbours as inputs, and read the
consequent values on the 4 column port lines. If any of these are low a key switch must be in
the pushed’ state.

As the row and column scanning proceeds a ‘scan code’ is incremented. This is effectively an index
into the key matrix positions. When a key is detected a check is made to see if this a new condition or
if it was also detected in the previous scan. This allows the logic to report only new key presses. This
check simply checks the scan code detected against the stored scan code resulting from the previous
scan. The key scanning logic is suppressed for a defined number of interrupts after a new press is
detected in order to prevent key bounces causing spurious key presses. The scanning is also
suppressed if a previously detected key press has yet to be processed by the main line code — the
main line code clears gucIntKeyScanCode when it processes each key press.

KEY SCANNING SUB JOB — ADC BASED KEY DETECTION

This method relies on the individual switches each connecting the ADC input to a distinct tap on a
potential divider chain. It follows that any one key press will set a particular input voltage at the ADC
input. ADC values can therefore be converted to the equivalent key. Note that the software is coded
so as to require three consecutive ADC reads to indicate the same key before it will be treated as
valid. This is to prevent instantaneous values read during the on or off transitions from one key being
erroneously treated as another.

SOFTWARE FEATURES

This section describes some of the software techniques that have been employed in the application
that may be useful for designers of other or similar applications.

ACCUMULATOR BASED TIME ACCOUNTING AND SCALING

The minute minder requires an accurate ‘seconds’ event to be detected in order correctly to maintain
the minutes variables which are displayed.

However, The time base timer period will in general not be an exact sub-multiple of a second, so
scaling is required to detect the passage of seconds accurately. The technique that is used here is a
general, and replies on simple arithmetic only, whilst still guaranteeing that no time is lost uring
rounding etc.

The principle is to use a simple accumulator. Each interrupt tick detected by the main line code adds
in an appropriate number of ‘time units’ to the accumulator and after each such addition, a test is
done to see if the number of ‘time units ' accrued in the accumulator has reached the equivalent of a
second. When this level is reached, the equivalent of an exact seconds worth of units is subtracted
from the accumulator, leaving any excess to form the start of the next second. The only critical part is
to select an appropriate time unit whole numbers of which can represent the exact time corresponding
to an interrupt period and a complete second.

In this application the main CPU clock is 8 MHz and the time base timer interrupt is set to divide by
2**14 so the period is 0.125 microseconds * 16384 or 2048 microseconds. If the accumulator were to
be scaled in microseconds we could therefore add in 2048 for each detected interrupt tick and
subtract 1000000 for each second. In fact in this application we are fortunate and we can divide by

www.toshiba-components.com January, 2003 TOSHIBA

the highest common factor of 2048 and 1000000 which is 64. We therefore add in 32 (i.e. 2048/64)
on every interrupt and subtract 15625 (i.e. 1000000/64) every second. The has the added benefit that
the accumulator need only be 16 bits in length as it needs only accommodate values slightly in excess
of the 15625 seconds limit.

CONVERTING ADC READINGS TO KEY SCAN CODES
The nominal ADC reading for a key at tap 'n” will be given by :-
ADC reading = 255 * n/12

Thus for example, pressing the key at the bottom right in the schematic connecting the ADC input to
the junction of R12 and R13 would give a nominal expected ADC reading of :-

ADCreading = 255 * 1/12 = 21.25 (rounded to 21)
For a 12 tap chain, the conversion to key position is effectively to divide by the number of ADC steps
per tap (255/12) or 21.25. In practice it is faster to multiply than to divide, and we also need to avoid
truncating values that are fractionally under the nominal positions.
The method used in the software is therefore based on :-

Key position (scan code) = ((ADC reading + 10) * 12)/256
This can be done quickly within simple 16 bit arithmetic by shifting and adding.
Note that R14 will reduce the nominal levels fractionally and the proportional reduction will be worst
for the centre tap (because the effective source impedance is highest here). In fact the proportional
loss at any tap ‘n’ can be approximated as :-

Resistance of one chain element (e.g R13)*(12n-n*n)/(12 *Pull down (i.e R14)

So for the centre element n=6, so assuming the chain elements are each 1k5 and the pull down
resistor R14 is 470K we have a proportional loss of :-

Proportional loss 1k5 *(72-36)/(12 * 470k)
0.0096 or 0.96 %

In practice this will be of the same order as the errors induced by tolerance errors in the resistances.
The difference in expected ADC readings voltage between taps are around 1/12 or 8 % so these
errors are acceptable. We can however compensate for this a little by simply increasing the constant
used for rounding to 12 from 10, so that the final transformation used is :-

Key position (scan code) = ((ADC reading + 12) * 12)/256

www.toshiba-components.com January, 2003 TOSHIBA

MULTIPLEXING KEY SCANNING AND LED DRIVING

Multiplexing the two display digits helps keep pin count down as the segment lines can drive both
digits. An interrupt driving strobing technique can provide a simple basis for this with alternate digits
being driven during alternate interrupt periods. However if we add a third scan period to the basic
LED signal frame but don't activate either of the digit drivers we can use the segment lines for key
scanning without bringing on the LEDs. However any keys that are made will connect two of the
segment lines together and this will have the consequence that when one of these connected
segments is activated the drive current will flow through the switch to its partner, bringing on that
possibly unwanted segment. This phenomenon can be removed by reducing the current that can flow

through the switches by means of series resistors.

The resultant multiplexing of display and key scanning, used in this application is illustrated in Figure

2.

Port 30 to Port 33
inclusive

Port 34 to Port 36
inclusive

DIGIT_A_SEL*

DIGIT_B_SEL*

Driving Driving Scanning Driving

digit A digit B keys digit A
Segment Segment Row inputs Segment
pattern for pattern for for key pattern for
digit A digit B scanning digit A
Segment Segment Column Segment
pattern for pattern for inputs for pattern for
digit A digit B key digit A

[I
L

www.toshiba-components.com

Figure 2 — Pin sharing for display driving and key scanning

January, 2003

L

TOSHIBA

Software Source Code
// Kk kA rkhk Ak hhhkhhkhkhA A r bk hkhk kA rrd kb hkhk kA rrA Ak hhkhkkkxxx*
// Ak kA Ak hkhhhhhhhkhkhhdrhhhhhhhkhkrdrdrdrkhhhkhhkhkrrdrrhkhkhkhkhkhkhdxxx

// AR R SRS S SRR SR SRR EEEEEEEEEEEEEEEE R R R R RS RS

// File : MinuteMindermain.c

// Authors : John Thorn

// AND Technology Research Ltd.
// 4 Forest Drive,

// Theydon Bois

// Essex, CM16 7EY

// Tel +44 (0) 1992 81 4655

// Fax +44 (0) 1992 81 3362

// e-mail : john.thorn@andtr.com
// WWW : Www.andtr.com

//

// This file contains the source code for the main function
// of the control for the Minute Minder Application Note
// for the TMP86P202/203 device.

// It is intended as valid input to the Toshiba
// C compiler/ tool chain.

// It is targeted at an TMP86P202

// AR RS EEE SRS RS R SRR EEEEEEEEEEEEEEEEEEE R R R R RS RS
// R R R R R R R S b h kI I I h E h 3 3k

// TO DO LIST

// R R R R R R b S R b S S kR R E S h S I E Ak h I b SR E b b 3
// Rk bk b b b bk b b b b b b Sk b b b b

// Version History

// 1.00 11/02/2003 JT,ATR
// Original coding completed.

// R b b b b b b bk b b b b b b b b b b b b b b b b b bk b b b b b b b b b b b bk b b b

// FUNCTIONAL OVERVIEW

// This code is the sample code supporting an application
// note for the TMP86P202/203 family of devices.

// It illustrates the use of :-

// 7 segment display driving

// Key matrix scanning using I/O lines shared with

// the display driving

// Key scanning via ADC input and tapped divider chain

// Divider output for tone generation

// Timebase timer for timebase operation

// FILE/ MODULE STRUCTURE

// There is a single main file only (this file).

// There is also cstartup.asm.

// BASIC SOFTWARE STRUCTURE

// A simple main loop is used.

// INTERRUPT USAGE AND SYSTEM TIMING

// A single timing interrupt using the time base timer to give a

// fast heartbeat timer at a nominal 10 milliseconds.

// INTERRUPT ENABLING AND DISABLING

// Apart from minor atomic sections global interrupts remain

www.toshiba-components.com January, 2003 TOSHIBA

// enabled the whole time.

// ADC USAGE

// None in this application

// CLOCK DETAILING

// The CPU is assumed to run at 8 MHz.

// Rk bk b b b bk b kb b bk b b b

// MEMORY LAYOUT NOTES

// The processor is used in single chip mode only, so there

// are no external busses.
// Ak hkhkhkkhkhkhkhkhkhkhhhhkhhkhkhkhkhhkhhkhkrkhhhk bk hkrhhkhkhkhkhkrhrhkhhkhxkx*

// Ak hkhkhkhhhkhhkhkhkhhhkhkhhkhkkhhhkhhhkrkhhkhkhkhkhkrhrhkhkhkhkrhrkhkhhkhxkx*k
// Ak Ak hhkhhhkhhkhhkhhhhhhhhhhkhhAhkrhhhkhkhkhrhrkhkhkhhkrhrkhhhhdxkhx*k
// COMPTITLER DIRECTTIVES

// Ak kA Ak hkhhhhhhhkhkhhkdrhhhhhhhkhkrrdrhhhhhhkhkrrdrrhkhhhkhkhkhdxxxx

// AR RS SRS S SRR E R SRR EEEEEEEEEEEEEEEEEEE R R R R RS RS

// Comment this out to get key scanning by rows and columns
// leave it uncommented to get ADC based key detection
//#define KEYS VIA ADC (1)

// This is used to select the key table for some

// prototype hardware

#define PROT HARDWARE (1)

[] KKKk ok ok ok kK ok ok ok kXK ok ok kKK o o ok kKK K ok o ok kX Kk ok ok ok kX K o ok ok kX
[] R KKK kK K K ok kK K K K ok kK K K K kK K K K kK K K K kK X K K kR ok
// I NCLUTDE FILES

[/ R K KK kK Kk o kK K K o kK K K o kKK K kK K K ok kK X Kk kX

[/ KKKK KKK KKK KK Kk Kk Kk K KKK KKK KKK K kK ko ok ok ok ok K kR R KK K K K Kk kK

// These are the processor specific definitions etc.
#include "i086xx02.h"

// Rk bk b b b b kb b b b b b bk b kg
[/ KFKK KKK KK KKKk KKk K K K K K KKK KKK K K Kk Kk ok kK kK kKR KK K K K Kk kK
// CONSTANTS A ND DEFINES

// R R R S S S S S b R b b S S h h S E S b b E b h h b S E h b b 3 3
// Rk bk b b b b b b Sk kb b b
[/ R R KR K K o ok Kk ok K K K ok K kK ok Kk R kK ok K kK ok Kk R kK R Rk Rk K kR kK Kk
// AR R SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE R R R R RS RS
// GENERTIC DEFINES

// R R R S S S S b S b b S E Sk E S E b S b h E b h h b b E h b b 3 3
// R b b b b b b bk bk b b b b b b bk b kb

#define BIT 0 (0x01)
#define BIT 1 (0x02)
#define BIT 2 (0x04)
#define BIT 3 (0x08)
#define BIT 4 (0x10)
#define BIT 5 (0x20)
#define BIT_6 (0x40)
#define BIT 7 (0x80)
#define HIGH 1
#define LOW 0
#define TRUE 1
#define FALSE 0

// dAhhkhkhkkhhhkhhkhhhhhhhhhhhhhhhhhhrkhhhkhkhhrhrdhhkhkhkrhrkhhhhxk

// APPLICATION DEFINES

// Ak hkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkkhhhkhhkhkrhhkkhkhhkhkrhrhkhkhkhkrhrhkhhkhxkhx*k

// hAhhkhhkkhkhhkhhkhkhkkhhhkhhhkhkkhhhkhkhhkrhhkhkhkhhkrhhrhkhhkhkrhrkhhhhhxkhx*k

// These are hardware specific definitions for this application
// These two port bits are the

#define DIGIT_A ENABLE pOdr_.bit.b0

#define DIGIT_B_ENABLE pOdr_.bit.bl

#ifndef KEYS VIA ADC

YVARREEEEEE RS AR EEE RSttt REEEEE Rttt

// Defines for the row and column scanning key detection scheme
//***

#define COLUMN PORT _p3dr_.byte

#define C_COLUMN MASK (BIT 3|BIT 2|BIT 1|BIT 0)

www.toshiba-components.com January, 2003 TOSHIBA

#define C_COLUMN 0 (BIT_0)

#define ROW_PORT _p3dr_.byte

#define C_ROW MASK (BIT_6|BIT_5|BIT_4)

#define C_ROW_O (BIT 4)

#define C_NUMBER OF ROWS (3)

#define C _NUMBER OF COLUMNS (4)

#define C_NUMBER OF KEYS (C_NUMBER OF ROWS*C_NUMBER_OF COLUMNS)
#define C_COLUMN SETTLING DELAY (50)

#else

//***

// Defines for the row and column scanning key detection scheme
//***

#define C_NUMBER OF KEYS (12)

// This actually 255/ (2*number of keys) plus an adjustment to compensate
// the effect of the pull- down

#define C_ROUNDING ADJUSTMENT (12)

// How many ADC reads of a given key before we see it as valid?

#define C_NUMBER OF CONS_ADC_READS (4)
// How much to wait between ADC reads
#define C_DELAY BETWEEN ADC READS (20)
#define ADCCR_START CONV AIN5 (0xa5)
#endif

#define SEGMENT_PORT _p3dr_.byte
#define C DEBOUNCE KEY SCAN PERIODS (5)

#define C_TICKS FOR APPROX 5 SECONDS (2443)
#define C_TICKS FOR _TONE BEEP (25)

// for time base interrupt at 8000000/2**14

// interrupt period =0.125 * 16384

// = 2048 microseconds

// we need to add in equiv of 2048 microsecs every interrupt
// and then remove 10000000 every second

// to work in 16 bits and keep the numbers down
// we can cancel these to the simplest fraction
// 2048/1000000 - cancel 64s = 32/15625

// at 8000000

#define C_TICKS PER _INTERRUPT (32)

#define C TICKS PER SECOND (15625)

// AR R SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE R R R R RS RS
// R R R S S S b S h b S E Sk R S E S b h E S E b bk SE h b 3k 3

// DATA DEFINTITTIONS

// These include some associated constant defines
// also. Most of these are kept near the associated
// RAM data.

// R R Rk R

[/ KRR KK K Kk ok Kk ok K Kk ok K kK ok Kk R K K K ok K kK ok Kk ok K R Rk ok kR ok K Kk

static volatile unsigned char _ tiny gucIntKeyScanCode;
static volatile unsigned char _ tiny gucIntTicks;

static unsigned char _ tiny gucInterruptSubdJob;

static unsigned char _ tiny gucElapsedTicks;

static unsigned char tiny gucDebounceTimer;

static unsigned char _ tiny gucSeconds;

static unsigned char _ tiny gucMinutesMsb;

static unsigned char _ tiny gucMinutesLsb;

static unsigned char tiny gucDisplayMsbSegments;
static unsigned char tiny gucDisplayLsbSegments;
static unsigned char _ tiny gucDisplayUpdate;

static unsigned char _ tiny gucCounting;

static unsigned char tiny gucKeyValue;

static int ~_tiny gnTickAccumulator;
static int __tiny gnToneTimer;

#ifdef PROT_ HARDWARE
const unsigned char KeyTransTable[C NUMBER OF KEYS+1] =
{ 0, // dummy for scan code 0
'4', '5', '6', '7',
'0" 'l" '2" '3"
'8" '9" 'c" '+'};

felse

www.toshiba-components.com January, 2003 TOSHIBA

const unsigned char KeyTransTable[C NUMBER OF KEYS+1] =
{ o0, // dummy for scan code 0
'0', '1', I2I,
'3', '4', '5',
'6" '7" '8"
ICI, 191, l+l};

fendif
/* define the character literals and the character translation table
for displaying - for this application we need only show

ordinary digits and a dash so we can set the values up so that
simple binary values can be used for the digits*/
enum {
SHOW_0=0,
SHOW 1,
SHOW_2,
SHOW_3,
SHOW_4,
SHOW_5,
SHOW_6,
SHOW_7,
SHOW_8,
SHOW 9,
SHOW_DASH
bi
#define SEGNONE 0x00
#define SEGA 0x01
#define SEGB 0x02
#define SEGC 0x04
#define SEGD 0x08
#define SEGE 0x10
#define SEGF 0x20
#define SEGG 0x40

#define C_SEGMENT MASK (SEGA+SEGB+SEGC+SEGD+SEGE+SEGF+SEGG)
#define SIZE OF DISPLAY CHAR TABLE (13)
const unsigned char DisplayCharToSegTable[C_NUMBER OF KEYS+1] =

{

SEGA+SEGB+SEGC+SEGD+SEGE+SEGF, // 0x00 0O

SEGB+SEGC, // 0x01 1
SEGA+SEGB+SEGD+SEGE+SEGG, // 0x02 2
SEGA+SEGB+SEGC+SEGD+SEGG, // 0x03 3
SEGB+SEGC+SEGF+SEGG, // 0x04 4
SEGA+SEGC+SEGD+SEGF+SEGG, // 0x05 5
SEGA+SEGC+SEGD+SEGE+SEGF+SEGG, // 0x06 6
SEGA+SEGB+SEGC, // 0x07 7
SEGA+SEGB+SEGC+SEGD+SEGE+SEGF+SEGG, // 0x08 8
SEGA+SEGB+SEGC+SEGD+SEGF+SEGG, // 0x09 9

SEGG // 0x0a -

// R Rk S S S S b b b b S h b E S E b S b b E b h b S S h h b b 3
// R R Rk i

// FUNCTTION PROTOTYPES

// AR R R SRR RS R EEEEEEEEEEEEEEEEEEEE R R R R R R R R RS RS
// R R S S b S b S E b b h h b E A E E E S b b E b E b b b SE h b b 3 3

extern void startup(void); // startup.asm

static void _ interrupt IntDummy (void);
static void interrupt n IntDummyN (void);
static void _ interrupt IntTBT (void);

static void Initialisation (void);

[] KKKKKKKA KKKk hhhh kKA AAAA A I Kk k ok hh kKKK KA A& kK

// ER R R R SRR RS R EEEEEEEEEEEEEEEEEEEEEEEE R R R R RS RS

// R R S S S h b b b b b b S h b E h E E b Sk b b h b b b Sk E h b b 3
// R R Rk b kb i

#pragma section code

/***

NAME : static void SetTone (unsigned char ucOn)

www.toshiba-components.com January, 2003 TOSHIBA

FUNCTION: Turns the tone (ie the DVO output) on or off.
PARAMETERS: ucOn - TRUE for tone on, FALSE for tone off
RETURN: None
NOTES: A simple wrapper to encapsulate hardware
details.
***/
static void SetTone (unsigned char ucOn)
{
unsigned char ucNewTBTCR;
ucNewTBTCR=TBTCR;
if (ucOn)
{
ucNewTBTCR &=0x0f;
ucNewTBTCR |[=(BIT_7 | BIT 5); // enable DVO and set 1.953 KHz
P1DR=BIT 2;
PICR=BIT 2;
} else

ucNewTBTCR &=0x0f;
P1DR=0;
P1CR=0;
}
TBTCR=ucNewTBTCR;
}

/***

NAME : static unsigned char GetKeyValue (unsigned char ucKeyScanCode)
FUNCTION: Converts key scan codes to key values via a simple

look-up function.
PARAMETERS: The scan code

RETURN: The key value
NOTES: A simple wrapper to encapsulate hardware
details.

***/

static unsigned char GetKeyValue (unsigned char ucKeyScanCode)
{

unsigned char ucReturn;

ucReturn = KeyTransTable[ucKeyScanCode];

return ucReturn;

}

/***

NAME : unsigned char GetADCKeyScanCode ()

FUNCTION: Gets an ADC reading and converts it to a key scan code
PARAMETERS: None

RETURN: The scan code

NOTES: Zero if no keys pressed, else scan code value

from 1 to 12.
To be valid, same key code has to be seen
C_NUMBER OF CONSECUTIVE ADC READS times.
***/
#ifdef KEYS VIA ADC
unsigned char GetADCKeyScanCode ()
{
unsigned char volatile ucDelay;
unsigned char ucCount;
unsigned int unFirstADCScanCode;
unsigned int unADCScanCode;

ucCount=1;
ADCCR1 = ADCCR_START CONV AINS5; // start conversion
while (! (ADCDR2 & 0x20)); // then wait for it to finish
unFirstADCScanCode=ADCDR1;
unFirstADCScanCode+:C_ROUNDING_ADJUSTMENT;
unFirstADCScanCode*=C_ NUMBER OF KEYS; // could replace this by add and shift as
optimisation if necessary
unFirstADCScanCode>>=8; // divide by 256
while (ucCount<C_NUMBER OF CONS ADC READS)
{
// wait for voltage to move some more if it's moving
for (ucDelay=0;ucDelay<C DELAY BETWEEN ADC READS;ucDelay++);
// Now get new ADC value
ADCCR1 = ADCCR_START_CONV_AINS5; // start conversion
while (! (ADCDR2 & 0x20)); // then wait for it to finish
unADCScanCode=ADCDR1;
unADCScanCode+=C_ROUNDING ADJUSTMENT;

unADCScanCode*=C_ NUMBER OF KEYS; // could replace this by add and
shift as optimisation if necessary
unADCScanCode>>=8; // divide by 256

www.toshiba-components.com January, 2003 TOSHIBA

if (unFirstADCScanCode!=unADCScanCode)
{
return 0;

}

ucCount++;
}
// To get here we had a consecutiv number of valid reads
return (unsigned char) (unFirstADCScanCode) ;

}

#endif
/***

NAME : static unsigned char GetSegmentPattern (unsigned char ucByte)
FUNCTION: Converts digits to the appropriate segment pattern for

the display, using a simple look-up table.
PARAMETERS: The digit wvalue to convert

RETURN: The segment pattern
NOTES: A simple wrapper to encapsulate hardware
details.

Assumes that segment 'a' is bit O,
segment 'b' is bit 1 etc.
***/
static unsigned char GetSegmentPattern (unsigned char ucByte)
{
unsigned char ucReturn;
ucReturn=DisplayCharToSegTable[ucByte];
return ucReturn;

}

/***

NAME : static void Initialisation(void)

FUNCTION: Set up i/o control registers, intial state variables etc.
PARAMETERS: None

RETURN: None

NOTES: Only non-zero variable initialisation is required

as startup.asm zaps the whole RAM to zero.
***/
static void Initialisation (void)
{
// Digit driving ports to initial state
DIGIT A ENABLE = HIGH;
DIGIT B _ENABLE = HIGH;

POOUTCR = 0x03; // push-pull outputs
//

P3CR = 0x00; // start as all inputs
P3DR = 0x00; // start as all low
P1DR=0;

P1CR=0;

// Time base timer - initialise to close to 488.28 Hz

// Ensure it's disabled

TBTCR &=~(BIT73);

// Select clock and start the timer
TBTCR=(BIT_3+3); // fc/2**14 and go

#ifdef KEYS VIA ADC
ADCCR1=0x25; // software start mode, don't start yet, AINS
ADCCR2=0x16; // ack= 156/fc= 19.5 us
#endif
gucMinutesMsb = SHOW_DASH;
gucMinutesLsb = SHOW_DASH;
gucCounting = FALSE;
gucDisplayUpdate = TRUE;
}

/***

NAME : void main (void)
FUNCTION: The main function.
This initialises the hardware before entering the main
loop, which is then repeated indefinitely.
The loop checks for new key presses and
updates timers derived from the time base timer

interrupt.
PARAMETERS: None
RETURN: None
NOTES:

***/

void main (void)

www.toshiba-components.com January, 2003

TOSHIBA

// Set up the hardware and any no-zero variable initialisation
Initialisation();

EIRL |= BIT 6; // now we've initialised we can safely enable the time base timer
interrupts
while (1) // so we don't exit out of main

{

// R R

// STAGE 1 - KEY PROCESSING
// Handle new key scan codes detected by the interrupt
// handler

// R R i R

if (gucIntKeyScanCode)

// new key press detected, make a key beep

SetTone (TRUE) ;

gnToneTimer=C_TICKS_FOR TONE_ BEEP;

// translate the raw scan code to the value of the key..
gucKeyValue=GetKeyValue (gucIntKeyScanCode) ;

// Tell the interrupt key scanning code we've seen this key press..
gucIntKeyScanCode=0;

// If he presses the 'Clear' key

// we stop counting and force dashes into the display

// AR R R R R R I S S Sk h S kS

// HANDLING OF 'C' CLEAR KEY

// khkhkkhhkkhkhhkhkhkkhhkkhkhhkhkhkhkhkkhhhkhkhkhrkhkhkhxk

if (gucKeyValue=='C"')

{
gucMinutesMsb=SHOW_ DASH;
gucMinutesLsb=SHOW_DASH;
gucCounting=FALSE;
gucDisplayUpdate=TRUE;
// 1f he presses '+' we just inc the time to go
// and start counting

} else if (gucKeyValue=='+")

// AR R R S R S b b S b h S S b Sk

// HANDLING OF '+' INCREMENT KEY
// khkhkkhkhkkhkhhkhkhkkhkhkkhkhhkhkhkhkhkkhkrhhkhkhkhrkhkhkhxk
{
gucCounting=TRUE;
gnTickAccumulator=0;
if ((gucMinutesLsb!=SHOW DASH) && (gucMinutesMsb!=SHOW DASH))
{
gucMinutesLsb++;
if (gucMinutesLsb>9)
{
gucMinutesLsb=0;
if (gucMinutesMsb<9)
{
gucMinutesMsb++;
}

} else

gucMinutesLsb=1;
gucMinutesMsb=0;
}
gucDisplayUpdate=TRUE;
} else

// R R R S S S S kb b Sk b b E b b b S S b bk

// HANDLING OF NUMBER KEYS

// khkhkkhkhkkhhkkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhhkhkhkhhkhhkk

// Here he's entered a number - feed this through the
// display starting with the 1ls digit

if (gucMinutesLsb==SHOW DASH)

gucMinutesMsb=0;
} else
{
gucMinutesMsb=gucMinutesLsb;
}
gucMinutesLsb=gucKeyValue-'0";
if (gucMinutesLsb | gucMinutesMsb) // only count 1f he's set a

non zero value

www.toshiba-components.com January, 2003 TOSHIBA

//
//
//

//
//

__asm("

asm ("

gnTickAccumulator=0;
gucCounting=TRUE;

} else

{
gucCounting=FALSE;

}

gucDisplayUpdate=TRUE;

Kk ok ok kK ok

STAGE 2

- TIME ACCOUNTING

Handle new elapsed time ticks detected by the interrupt

handler

Kk ok ok kK ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

Now handle the time detected by the interrupt handler
fetch the elapsed time counted by the interrupt handler

di");

gucElapsedTicks=gucIntTicks;
gucIntTicks=0;

ei");

// Handle the elapsed time..
(gucElapsedTicks)

if
{

//
//
//
//
//
if
{

}

//
//
//
//

Update all the timeout timers
(currently only the tone timer)
R R R

HANDLING OF TIMEOUTS

KA KA Ak Kk

(gnToneTimer)

gnToneTimer--;
if (gnToneTimer==0)
{
SetTone (FALSE) ;
}

Now update the minute minder time
R R R R

HANDLING OF MINUTE MINDER TIME

KA KA ARk Kk

while (gucElapsedTicks) // count down for each tick..

{

}

gucElapsedTicks--;
gnTickAccumulator+=C_TICKS PER INTERRUPT;
while (gnTickAccumulator>=C TICKS PER SECOND)
{
gnTickAccumulator-=C TICKS PER SECOND;
gucSeconds++;
// Handle seconds increment
if (gucSeconds>=60)
{
gucSeconds-=60;
// Handle minutes decrement...
// There will be a display update in all cases
gucDisplayUpdate=TRUE;
if ((gucMinutesLsb==1) && (gucMinutesMsb==0))
{
gucMinutesLsb=0;
// Timer has counted down to zero
SetTone (TRUE) ;
gnToneTimer=C_TICKS FOR APPROX 5 SECONDS;
gucCounting=FALSE;
} else

if (gucMinutesLsb)

{
gucMinutesLsb--;

} else

{
gucMinutesLsb=9;
gucMinutesMsb--;

}

}
} // end of seconds wrap-over code
} // end of while ie end of for each tick detected

} // end of elapsed ticks

www.toshiba-components.com January, 2003 TOSHIBA

// R R R

// STAGE 2 - HANDLING OF DISPLAY UPDATE

// Translate any changed display values for
// driving out by the interrupt handler.

// R R R

if (gucDisplayUpdate)

gucDisplayMsbSegments=GetSegmentPattern (gucMinutesMsb) ;
gucDisplayLsbSegments=GetSegmentPattern (gucMinutesLsb) ;
gucDisplayUpdate=FALSE;
}
} //end of while 1 loop

[] KKKk ok ok ok kK ok o ok kXK ok ok kKK o o ok ok KKk ok ok ok kXK ok ok kX K o kK X
[] R KKK kK K K ok kK K K K ok kK K K K K K K K kK K K K kK X K K kK %
// INTERRUPT HANDTILERS

[] KKK kK Kk o kKK o K KK K kKK K o kK K K o ok kX K kK X
[] KKKk ok ok ok kK ok ok ok kXK ok ok ok kKK o o ok kKK K ok o ok kX Kk ok ok kK X K o o ok kX

/***

NAME : static void _ interrupt IntDummy (void)

FUNCTION: Handles unwanted interrupts.

PARAMETERS: None

RETURN: None

NOTES: Defensive programming only - these interrupts should

never happen,
***/
static void interrupt IntDummy (void)
{
// do nothing except return from interrupt

}

/KKK KKK KK KKK KKKk KK K K K K K K K KKK K K kK ko ok ok ok K K K K K K K Kk Kk ko ok ok K K K kR R R R K Kk kK ok

NAME : static void _ interrupt n IntDummyN (void)

FUNCTION: Handles unwanted NMI interrupts.

PARAMETERS: None

RETURN: None

NOTES: Defensive programming only - these interrupts should

never happen in this application,
***/
static void = interrupt n IntDummyN (void)
{
// do nothing except return from interrupt

}

KKK K K KK K K K R K K Kk K K R K K K R K K K ok Kk R kK K R K kK ok Kk R kK R K K R ok Kk R Rk R R Kk kK ok ok k

NAME : static void _ interrupt IntTBT (void)
FUNCTION: Handles interrupts from the time base timer.
PARAMETERS: None
RETURN: None
NOTES : These are set to occur at 488.28 Hz.
Increments elapsed time counter for main line
timeouts.

Strobes the display and scans the keyboard.
Activities switch between three sub-jobs
on consecutive interrupts
***/
static void _ interrupt IntTBT (void)
{
unsigned char ucScanCode;
static unsigned char ucLastScanCode=0;
#ifndef KEYS VIA ADC
unsigned char ucColumns;
unsigned char ucRow;
unsigned char volatile ucDelay;
#endif
// khkhkkhhkkhkhkhkhkhkkhkhkkhhhkhkhkhkhkkhkhhkhkhkhkhkkhkhkhkhhkhxxk
// Stage 1 - increment the interrupt tick
// count which is used to feed the main line timer (s)
// with elapsed time..

[] KKKKKKK KKK K Kk kkk kKKK KKK &K KKKk Kk k kK

gucIntTicks++;
// KA KA AR KKKk

// Stage 2 - subjob despatching

// R R R

switch (gucInterruptSubJob)
{

// RR R R S kb b b b h b S h Sk kb

// Stage 2A - subjob for drive digit A

[] KKKKKK KKK KK KKk kk kKKK KKK K&K KKKk ok ok kK

www.toshiba-components.com January, 2003 TOSHIBA

default

case 0
SEGMENT PORT = gucDisplayMsbSegments;
P3CR=C_SEGMENT_MASK; // make all segments outputs
DIGIT A ENABLE = LOW;
// subjob housekeeping - next interrupt gets different job
gucInterruptSubJob=1;

break;

// R R i i

// Stage 2B - subjob for drive digit B

// PR RS RS

case 1
DIGIT A ENABLE = HIGH;
P3CR=C_SEGMENT_MASK; // make all segments outputs
SEGMENT PORT = gucDisplayLsbSegments;
DIGIT B_ENABLE = LOW;
// subjob housekeeping - next interrupt gets different job
gucInterruptSubJob=2;
break;

// RR R R R R R R I R S S S S E S S S

// Stage 2B - subjob for key scanning
// R R i
case 2
// subjob housekeeping - next interrupt gets different Jjob
gucInterruptSubJob=0;
// Remove drive to digit B so we can re-use segments for scanning..
DIGIT B ENABLE = HIGH;
// After a valid keypress we hold off scanning to let things settle
// for at least a defined debounce time...
if (gucDebounceTimer)
{
gucDebounceTimer--;
return;

// After a valid keypress we hold off scanning until the main line
// code has 'absorbed' that key press.
if (gucIntKeyScanCode)

return;

// Scan code zero is taken to mean no presses so we start scanning from

// 1

#ifndef KEYS VIA ADC

// R R R R S S b b E S b S S E Ak h h S

// ROW AND COLUMN KEY-SCANNING SECTION
// R R R i
ucScanCode=1;
// drive a low across all the rows...
for (ucRow=C_ROW_0; (ucRow & C_ROW_MASK) ;ucRow<<=1)
{
P3CR=C_ROW_MASK; // make all columns inputs
ROW_PORT=((ROW_PORT & ~C_ROW MASK) | (~(ucRow) & C_ROW MASK));
// wait for lows from rows to propagate through switches
// and series resistors etc.
for (ucDelay=0;ucDelay<C_COLUMN_SETTLING_DELAY;ucDelay++) ;
// now scan for a low in the columns..
ucColumns= (COLUMN_PORT & C_COLUMN_MASK) ;
// first of all- are there any lows at all??
if (ucColumns!=C_COLUMN MASK)
{
// to get here there must be at least one low..
// so let's scan across the bits till we find one..
while (ucColumns & C_COLUMN 0)
{
ucColumns>>=1;
ucScanCode++;
}
// Here we've found the first low and we'll use that
// but is this a change?
if (ucScanCode!=ucLastScanCode)
{
// yes a new key press was detected - advise
// the main line code and set the debounce timer
// so we won't look again for a while.
gucIntKeyScanCode=ucScanCode;
gucDebounceTimer=C_DEBOUNCE_KEY_ SCAN_PERIODS;

www.toshiba-components.com January, 2003 TOSHIBA

ucLastScanCode=ucScanCode;
}
return;
}
ucScanCode+=C_NUMBER OF COLUMNS;
}
ucLastScanCode=0;
ffelse
// R R R

// ADC KEY DETECTION SECTION

// ER SRR RS S

ucScanCode=GetADCKeyScanCode () ;

// Here we've found the first low and we'll use that

// but is this a change?

if (ucScanCode!=ucLastScanCode)

{
// yes a new key press was detected - advise
// the main line code and set the debounce timer
// so we won't look again for a while.
gucIntKeyScanCode=ucScanCode;
gucDebounceTimer=C_DEBOUNCE KEY SCAN PERIODS;

}

ucLastScanCode=ucScanCode;

#endif
break;

}

// Ak hkhhkhkhhkhkhkhkhkkhhhkhkhkhkhhhhkhhkhkhkhhhkhkhkhkrhhkhkhkhkhkrhrkhkhkhxkhx*k
// Ak hkhkhkkhhhkhhkhkhkhhhkhkhkhkhrkhhhkhhhkrkhhkhkhkhkhkhrhrkhkhkhkhkrhrhhhkkhxkx*k
// VECTOR TABLE

// Ak kA Ak hhkhhhkhkhhhkhkhdrhkhhhhhhkhkrdrdrhkhhhdhhkhkrrdrrhkhkhhkhkhkhdxxx

// AR R R SRS SRR RS R R R EEEEEEEEEEEEEEEEEEE R R R R RS RS

#pragma section const VECTORS Oxffe0

static const void *const IntTbl[] = {
IntDummy, // int5 (external interrupt 5)
IntDummy, // reserved
IntDummy, // reserved
IntDummy, // intadc (adc interrupt)
IntDummy, // inttcd4 (timer/counter 4 interrupt)
IntDummy, // inttc3 (timer/counter 3 interrupt)
IntDummy, // reserved
IntDummy, // reserved
IntDummy, // reserved
IntTBRT, // inttbt (time base timer interrupt)
IntDummy, // intl (external interrupt 1)
IntDumnmy, // int0 (external interrupt 0)
IntDummyN, // intwdt (watchdog timer interrupt)
IntDummyN, // intatrap (address trap interrupt)
IntDummyN, // intswi/intundef (software interrupt/undefined
instruction interrupt)
startup, // (reset)

}i

/**

End of MinuteMinder.c
(LR R RRRRRRRRRRRRRRRRRRRRERRRRRERERRERERRERRRRRRRRRRERERRBRRERRRRRRRRRERRERE0REREHN

www.toshiba-components.com January, 2003 TOSHIBA

DISCLAIMER

Disclaimer

o TOSHIBA is continually working to improve the quality and reliability of its products.
Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent
electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer,
when utilizing TOSHIBA products, to comply with the standards of safety in making a safe
design for the entire system, and to avoid situations in which a malfunction or failure of such
TOSHIBA products could cause loss of human life, bodily injury or damage to property. In
developing your designs, please ensure that TOSHIBA products are used within specified
operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please
keep in mind the precautions and conditions set forth in the “Handling Guide for
Semiconductor Devices,” or "TOSHIBA Semiconductor Reliability Handbook” etc..

o The TOSHIBA products listed in this document are intended for usage in general
electronics applications (computer, personal equipment, office equipment, measuring
equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are
neither intended nor warranted for usage in equipment that requires extraordinarily high
quality and/or reliability or a malfunction or failure of which may cause loss of human life or
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control
instruments, airplane or spaceship instruments, transportation instruments, traffic signal
instruments, combustion control instruments, medical instruments, all types of safety devices,
etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the
customer’s own risk.

o The information contained herein is presented only as a guide for the applications of
our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements
of intellectual property or other rights of the third parties which may result from its use. No
license is granted by implication or otherwise under any intellectual property or other rights of
TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

www.toshiba-components.com January, 2003 TOSHIBA

OVERSEAS SUBSIDIARIES AND AFFILIATES

Toshiba Electronics Europe
GmbH

Diisseldorf Head Office

Hansaallee 181, D-40549 Diisseldorf
Germany

Tel: (0211)5296-0 Fax: (0211)5296-400

Miinchen Office

Biiro Miinchen Hofmannstrasse 52,
D-81378, Miinchen, Germany

Tel: (089)748595-0 Fax: (089)748595-42

Toshiba Electronics France SARL
Immeuble Robert Schumann 3 Rue de
Rome,

F-93561, Rosny-Sous-Bois, Cedex, France
Tel: (1)48-12-48-12 Fax: (1)48-94-51-15

Toshiba Electronics Italiana S.R.L.
Centro Direzionale Colleoni

Palazzo Perseo Ingr. 2-Piano 6,

Via Paracelso n.12, 1-20041 Agrate Brianza
Milan, Italy

Tel: (039)68701 Fax:(039)6870205

Toshiba Electronics Espaiia, S.A
Parque Empresarial San Fernando Edificio
Europa,

la Planta, ES-28831 Madrid, Spain

Tel: (91)660-6700 Fax:(91)660-6799

Toshiba Electronics(UK) Limited
Riverside Way, Camberley Surrey,
GUI53YA, UK.

Tel: (01276)69-4600 Fax: (01276)69-4800

Toshiba Electronics Scandinavia AB
Gustavslundsvagen 12, 2nd Floor

S-161 15 Bromma, Sweden

Tel: (08)704-0900 Fax: (08)80-8459

Toshiba Electronics Asia

(Singapore) Pte. Ltd.

Singapore Head Office

438B Alexandra Road, #06-08/12 Alexandra
Technopark, Singapore 119968

Tel: (278)5252 Fax: (271)5155

Bangkok Office

135 Moo 5 Bangkadi Industrial Park,
Tivanon Rd.,Bangkadi Amphur Muang
Pathumthani, Bangkok, 12000, Thailand
Tel: (02)501-1635 Fax: (02)501-1638

Toshiba Electronics Trading
(Malaysia)Sdn. Bhd.

Kuala Lumpur Head Office

Suite W1203, Wisma Consplant, No.2,
Jalan SS 16/4, Subang Jaya, 47500 Petaling
Jaya, Selangor Darul Ehsan, Malaysia

Tel: (3)731-6311 Fax: (3)731-6307

Penang Office

Suite 13-1, 13th Floor, Menard Penang
Garden,

26th Floor, Citibank Tower, Valero Street,
Makati, Manila, Philippines

Tel: (02)750-5510 Fax: (02)750-5511

Toshiba Electronics Philippines, Inc.
26th Floor, Citibank Tower, Valero Street,
Makati, Manila, Philippines

Tel: (02)750-5510 Fax: (02)750-5511

www.toshiba-components.com

Toshiba America
Electronic Components, Inc.

Headquarters-Irvine, CA
9775 Toledo Way, Irvine, CA 92618, U.S.A.
Tel: (949)455-2000 Fax: (949)859-3963

Boulder, CO

3100 Arapahoe Avenue, Ste. 500,
Boulder, CO 80303, U.S.A.

Tel: (303)442-3801 Fax: (303)442-7216

Boynton Beach, FL(Orlando)
11924 W. Forest Hill Blvd., Ste. 22-337,
Boynton Beach, FL 33414, U.S.A.

Tel: (561)374-6193 Fax: (561)374-6194

Deerfield, IL(Chicago)

One Pkwy., North, Suite 500, Deerfield,
1L 60015-2547, U.S.A.

Tel: (847)945-1500 Fax: (847)945-1044

Duluth, GA(Atlanta)

3700 Crestwood Parkway, Ste. 460,
Duluth, GA 30096, U.S.A.

Tel: (770)931-3363 Fax: (770)931-7602

Edison, NJ

2035 Lincoln Hwy. Ste. #3000, Edison
NJ 08817, U.S.A.

Tel: (732)248-8070 Fax: (732)248-8030

Orange County, CA

2 Venture Plaza, #500 Irvine, CA 92618,
U.S.A.

Tel: (949)453-0224 Fax: (949)453-0125

Portland, OR

1700 NW 167th Place, #240,
Beaverton, OR 97006, U.S.A.

Tel: (503)629-0818 Fax: (503)629-0827

Richardson, TX(Dallas)

777 East Campbell Rd., Suite 650,
Richardson,

TX 75081, U.S.A.

Tel: (972)480-0470 Fax: (972)235-4114

San Jose Engineering Center, CA
1060 Rincon Circle, San Jose, CA 95131,
US.A.

Tel: (408)526-2400 Fax:(408)526-2410

Wakefield, MA(Boston)

401 Edgewater Place, Suite #360, Wakefield,
MA 01880-6229, U.S.A.

Tel: (781)224-0074 Fax: (781)224-1095

Toshiba Do Brasil S.A.

Electronic Components Div.

Estrada Dos Alvarengas, 5. 500
09850-550-Sao Bernardo do campo - SP
Tel: (011)7689-7171 Fax: (011)7689-7189

Toshiba Electronics Asia, Ltd.

Hong Kong Head Office

Level 11, Top Glory Insurance Building,
Grand Century

Place, No.193, Prince Edward Road West,
Mong Kok, Kowloon, Hong Kong

Tel: 2375-6111 Fax: 2375-0969

Beijing Office

Rm 714, Beijing Fortune Building,

No.5 Dong San Huan Bei-Lu, Chao Yang
District, Beijing, 100004, China

Tel: (010)6590-8795 Fax: (010)6590-8791

Chengdu Office

Unit F, 18th Floor, New Times Plaza, 42

Wenwu Road, Xinhua Avenue, Chengdu,
610017, China

Tel: (028)675-1773 Fax: (028)675-1065

Shenzhen Office

Rm 3010-3012, Office Tower Shun Hing
Square, Di Wang Commercial Centre, 333
ShenNan East Road, Shenzhen, 518008,
China

Tel: (0755)246-1582 Fax: (0755)246-1581

Toshiba Electronics Korea
Corporation

Seoul Head Office

14/F, KEC B/D, 257-7 Yangjae-Dong,
Seocho-ku, Seoul, Korea

Tel: (02)589-4334 Fax: (02)589-4302

Gumi Office

6/F, Ssangyong Investment Securities B/D,
56 Songjung-Dong, Gumi City

Kyeongbuk, Korea

Tel: (82)54-456-7613 Fax: (82)54-456-7617

Toshiba Technology Development
(Shanghai) Co., Ltd.

23F, Shanghai Senmao International
Building, 101 Yin Cheng East Road, Pudong
New Area, Shanghai, 200120, China

Tel: (021)6841-0666 Fax: (021)6841-5002

Tsurong Xiamen Xiangyu Trading
Co., Ltd.

8N, Xiamen SEZ Bonded Goods Market
Building, Xiamen, Fujian, 361006, China
Tel: (0592)562-3798 Fax: (0592)562-3799

Toshiba Electronics Taiwan
Corporation

Taipei Head Office

17F, Union Enterprise Plaza Bldg. 109

Min Sheng East Rd., Section 3, 0446 Taipei,
Taiwan

Tel: (02)514-9988 Fax: (02)514-7892

Kaohsiung Office

16F-A, Chung-Cheng Bldg., Chung-Cheng
3Rd., 80027, Kaohsiung, Taiwan

Tel: (07)222-0826 Fax: (07)223-0046

TOSHIBA Semiconductor Websites

Europe: www.toshiba-components.com
Japan: www.semicon.toshiba.co.jp/eng/index.html

America: www.toshiba.com/taec/

January, 2003

	Introduction
	Hardware Schematic – Key Matrix Example
	Figure 1 - The schematic of the sample timer using row and column scanning for key detection.
	Hardware Description -– Row and Column Scanning K
	Hardware Schematic – ADC Based Key Detection
	Hardware Description – ADC Based Key Detection
	Software Description
	SOFTWARE FEATURES
	Software Source Code

